Journal Home > Volume 13 , Issue 5

Living electronics that converges the unique functioning modality of biological and electrical circuits has the potential to transform both fundamental biophysical/biochemical inquiries and translational biomedical/engineering applications. This article will review recent progress in overcoming the intrinsic physiochemical and signaling mismatches at biological/electronic interfaces, with specific focus on strategic approaches in forging the functional synergy through: (1) biohybrid electronics, where genetically encoded bio-machineries are hybridized with electronic transducers to facilitate the translation/interpretation of biologically derived signals; and (2) biosynthetic electronics, where biogenic electron pathways are designed and programmed to bridge the gap between internal biological and external electrical circuits. These efforts are reconstructing the way that artificial electronics communicate with living systems, and opening up new possibilities for many cross-disciplinary applications in biosynthesis, sensing, energy transduction, and hybrid information processing.


menu
Abstract
Full text
Outline
About this article

Living electronics

Show Author's information Yixin ZhangLeo (Huan-Hsuan) HsuXiaocheng Jiang( )
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA

Abstract

Living electronics that converges the unique functioning modality of biological and electrical circuits has the potential to transform both fundamental biophysical/biochemical inquiries and translational biomedical/engineering applications. This article will review recent progress in overcoming the intrinsic physiochemical and signaling mismatches at biological/electronic interfaces, with specific focus on strategic approaches in forging the functional synergy through: (1) biohybrid electronics, where genetically encoded bio-machineries are hybridized with electronic transducers to facilitate the translation/interpretation of biologically derived signals; and (2) biosynthetic electronics, where biogenic electron pathways are designed and programmed to bridge the gap between internal biological and external electrical circuits. These efforts are reconstructing the way that artificial electronics communicate with living systems, and opening up new possibilities for many cross-disciplinary applications in biosynthesis, sensing, energy transduction, and hybrid information processing.

Keywords: bioelectronics, extracellular electron transfer, signaling, biohybrid, synthetic biology, electrochemically active bacteria

References(103)

[1]
Sarpeshkar, R. The big picture. In Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-inspired Systems; Sarpeshkar, R., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp 3-27.
DOI
[2]
Sarpeshkar, R. Feedback systems: Fundamentals, benefits, and root-locus analysis. In Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-inspired Systems; Sarpeshkar, R., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp 28-56.
DOI
[3]
Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511-517.
[4]
Rotenberg, M. Y.; Tian, B. Z. Bioelectronic devices: Long-lived recordings. Nat. Biomed. Eng. 2017, 1, 0048.
[5]
Lacour, S. P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063.
[6]
Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2013, 6, 31-51.
[7]
Zhang, A. Q.; Lieber, C. M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215-257.
[8]
Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010, 329, 830-834.
[9]
Cohen-Karni, T.; Timko, B. P.; Weiss, L. E.; Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 7309-7313.
[10]
Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180-184.
[11]
Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185-190.
[12]
Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882-1887.
[13]
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629-636.
[14]
Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods 2016, 13, 875-882.
[15]
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
[16]
Wang, W. U.; Chen, C.; Lin, K. H.; Fang, Y.; Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA 2005, 102, 3208-3212.
[17]
Hahm, J. I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51-54.
[18]
Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017-14022.
[19]
Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z. A.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 2015, 348, 1451-1455.
[20]
Jiang, Z.; Qing, Q.; Xie, P.; Gao, R. X.; Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711-1716.
[21]
Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. 2019, 119, 9136-9152.
[22]
Wang, C. F.; Wang, C. G.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.
[23]
Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-1607.
[24]
Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510-517.
[25]
Hong, G. S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for single-neuron chronic recording from the retina in awake mice. Science 2018, 360, 1447-1451.
[26]
Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 2015, 14, 1286-1292.
[27]
Inal, S.; Rivnay, J.; Suiu, A. O.; Malliaras, G. G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 51, 1368-1376.
[28]
Kozai, T. D. Y.; Catt, K.; Du, Z. H.; Na, K.; Srivannavit, O.; Haque, R. U. M.; Seymour, J.; Wise, K. D.; Yoon, E.; Cui, X. T. Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans. Biomed. Eng. 2016, 63, 111-119.
[29]
Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203-4218.
[30]
Liu, G. Z.; Qi, M.; Hutchinson, M. R.; Yang, G. F.; Goldys, E. M. Recent advances in cytokine detection by immunosensing. Biosens. Bioelectron. 2016, 79, 810-821.
[31]
Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747-1763.
[32]
Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992-4003.
[33]
Allen, B. L.; Kichambare, P. D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439-1451.
[34]
Pappa, A. M.; Parlak, O.; Scheiblin, G.; Mailley, P.; Salleo, A.; Owens, R. M. Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 2018, 36, 45-59.
[35]
Stenken, J. A.; Poschenrieder, A. J. Bioanalytical chemistry of cytokines-a review. Anal. Chim. Acta 2015, 853, 95-115.
[36]
Moon, J. M.; Thapliyal, N.; Hussain, K. K.; Goyal, R. N.; Shim, Y. B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540-552.
[37]
Perry, M.; Li, Q.; Kennedy, R. T. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 2009, 653, 1-22.
[38]
Nguyen, H. H.; Lee, S. H.; Lee, U. J.; Fermin, C. D.; Kim, M. Immobilized enzymes in biosensor applications. Materials (Basel) 2019, 12, 121.
[39]
Willner, I.; Willner, B. Biomaterials integrated with electronic elements: En route to bioelectronics. Trends Biotechnol. 2001, 19, 222-230.
[40]
Yates, N. D. J.; Fascione, M. A.; Parkin, A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem. -Eur. J. 2018, 24, 12164-12182.
[41]
Saboe, P. O.; Conte, E.; Farell, M.; Bazan, G. C.; Kumar, M. Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces. Energy Environ. Sci. 2017, 10, 14-42.
[42]
Nöll, T.; Nöll, G. Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem. Soc. Rev. 2011, 40, 3564-3576.
[43]
Ghorbani Zamani, F.; Moulahoum, H.; Ak, M.; Odaci Demirkol, D.; Timur, S. Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal. Chem. 2019, 118, 264-276.
[44]
Yuan, M. W.; Minteer, S. D. Redox polymers in electrochemical systems: From methods of mediation to energy storage. Curr. Opin. Electrochem. 2019, 15, 1-6.
[45]
Hasan, K.; Milton, R. D.; Grattieri, M.; Wang, T.; Stephanz, M.; Minteer, S. D. Photobioelectrocatalysis of intact chloroplasts for solar energy conversion. ACS Catal. 2017, 7, 2257-2265.
[46]
Kim, E.; Archibald, J. M. Diversity and evolution of plastids and their genomes. In The Chloroplast: Interactions with the Environment; Sandelius, A. S.; Aronsson, H., Eds.; Springer: Berlin, Heidelberg, 2009; pp 1-39.
[47]
Kulbacka, J.; Choromańska, A.; Rossowska, J.; Weżgowiec, J.; Saczko, J.; Rols, M. P. Cell membrane transport mechanisms: Ion channels and electrical properties of cell membranes. In Transport Across Natural and Modified Biological Membranes and Its Implications in Physiology and Therapy. Kulbacka, J.; Satkauskas, S., Eds.; Springer: Cham, 2017; pp 39-58.
DOI
[48]
Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405-3409.
[49]
Dai, X. C.; Vo, R.; Hsu, H. H.; Deng, P.; Zhang, Y. X.; Jiang, X. C. Modularized field-effect transistor biosensors. Nano Lett. 2019, 19, 6658-6664.
[50]
Gao, N.; Zhou, W.; Jiang, X. C.; Hong, G. S.; Fu, T. M.; Lieber, C. M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett. 2015, 15, 2143-2148.
[51]
Bay, H. H.; Vo, R.; Dai, X. C.; Hsu, H. H.; Mo, Z. M.; Cao, S. R.; Li, W. Y.; Omenetto, F. G.; Jiang, X. C. Hydrogel gate graphene field-effect transistors as multiplexed biosensors. Nano Lett. 2019, 19, 2620-2626.
[52]
Liu, Q. J.; Wu, C. S.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chem. Rev. 2014, 114, 6423-6461.
[53]
Stern, E.; Steenblock, E. R.; Reed, M. A.; Fahmy, T. M. Label-free electronic detection of the antigen-specific T-cell immune response. Nano Lett. 2008, 8, 3310-3314.
[54]
Pham, T. D.; Pham, P. Q.; Li, J. F.; Letai, A. G.; Wallace, D. C.; Burke, P. J. Cristae remodeling causes acidification detected by integrated graphene sensor during mitochondrial outer membrane permeabilization. Sci. Rep. 2016, 6, 35907.
[55]
Kumar, A.; Hsu, L. H. H.; Kavanagh, P.; Barrière, F.; Lens, P. N. L.; Lapinsonnière, L.; Lienhard V, J. H.; Schröder, U.; Jiang, X. C.; Leech, D. The ins and outs of microorganism-electrode electron transfer reactions. Nat. Rev. Chem. 2017, 1, 0024.
[56]
Yang, Y. G.; Xu, M. Y.; Guo, J.; Sun, G. P. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 2012, 47, 1707-1714.
[57]
Snider, R. M.; Strycharz-Glaven, S. M.; Tsoi, S. D.; Erickson, J. S.; Tender, L. M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl. Acad. Sci. USA 2012, 109, 15467-15472.
[58]
Jiang, X. C.; Hu, J. S.; Petersen, E. R.; Fitzgerald, L. A.; Jackan, C. S.; Lieber, A. M.; Ringeisen, B. R.; Lieber, C. M.; Biffinger, J. C. Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat. Commun. 2013, 4, 2751.
[59]
Shi, L.; Dong, H. L.; Reguera, G.; Beyenal, H.; Lu, A. H.; Liu, J.; Yu, H. Q.; Fredrickson, J. K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651-662.
[60]
Santos, T. C.; Silva, M. A.; Morgado, L.; Dantas, J. M.; Salgueiro, C. A. Diving into the redox properties of Geobacter sulfurreducens cytochromes: A model for extracellular electron transfer. Dalton Trans. 2015, 44, 9335-9344.
[61]
Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358-11363.
[62]
Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098-1101.
[63]
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968-3973.
[64]
Newman, D. K.; Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, 94-97.
[65]
Jiang, X. C.; Hu, J. S.; Fitzgerald, L. A.; Biffinger, J. C.; Xie, P.; Ringeisen, B. R.; Lieber, C. M. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 16806-16810.
[66]
Babauta, J.; Renslow, R.; Lewandowski, Z.; Beyenal, H. Electrochemically active biofilms: Facts and fiction. A review. Biofouling 2012, 28, 789-812.
[67]
Selberg, J.; Gomez, M.; Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Syst. 2018, 7, 231-244.
[68]
Scognamiglio, V.; Antonacci, A.; Lambreva, M. D.; Litescu, S. C.; Rea, G. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens. Bioelectron. 2015, 74, 1076-1086.
[69]
Leang, C.; Malvankar, N. S.; Franks, A. E.; Nevin, K. P.; Lovley, D. R. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ. Sci. 2013, 6, 1901-1908.
[70]
Tan, Y.; Adhikari, R. Y.; Malvankar, N. S.; Pi, S.; Ward, J. E.; Woodard, T. L.; Nevin, K. P.; Xia, Q. F.; Tuominen, M. T.; Lovley, D. R. Synthetic biological protein nanowires with high conductivity. Small 2016, 12, 4481-4485.
[71]
Altamura, L.; Horvath, C.; Rengaraj, S.; Rongier, A.; Elouarzaki, K.; Gondran, C.; Maçon, A. L. B.; Vendrely, C.; Bouchiat, V.; Fontecave, M. et al. A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires. Nat. Chem. 2017, 9, 157-163.
[72]
Matsuda, S.; Liu, H.; Kouzuma, A.; Watanabe, K.; Hashimoto, K.; Nakanishi, S. Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella. PLoS One 2013, 8, e72901.
[73]
Kato, S. Influence of anode potentials on current generation and extracellular electron transfer paths of Geobacter species. Int. J. Mol. Sci. 2017, 18, 108.
[74]
Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P. L. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. Bioelectrochemistry 2018, 119, 172-179.
[75]
Hsu, L.; Deng, P.; Zhang, Y. X.; Nguyen, H. N.; Jiang, X. C. Nanostructured interfaces for probing and facilitating extracellular electron transfer. J. Mater. Chem. B 2018, 6, 7144-7158.
[76]
Xie, X.; Hu, L. B.; Pasta, M.; Wells, G. F.; Kong, D. S.; Criddle, C. S.; Cui, Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 2011, 11, 291-296.
[77]
Bian, R. X.; Jiang, Y.; Wang, Y.; Sun, J. K.; Hu, J. S.; Jiang, L.; Liu, H. Highly boosted microbial extracellular electron transfer by semiconductor nanowire array with suitable energy level. Adv. Funct. Mater. 2018, 28, 1707408.
[78]
Nakamura, R.; Okamoto, A.; Tajima, N.; Newton, G. J.; Kai, F.; Takashima, T.; Hashimoto , K. Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium. ChemBioChem 2010, 11, 643-645.
[79]
Nakamura, R.; Kai, F.; Okamoto, A.; Newton, G. J.; Hashimoto, K. Self-constructed electrically conductive bacterial networks. Angew. Chem., Int. Ed. 2009, 48, 508-511.
[80]
Kalathil, S.; Katuri, K. P.; Alazmi, A. S.; Pedireddy, S.; Kornienko, N.; Costa, P. M. F. J.; Saikaly, P. E. Bioinspired synthesis of reduced graphene oxide-wrapped Geobacter sulfurreducens as a hybrid electrocatalyst for efficient oxygen evolution reaction. Chem. Mater. als 2019, 31, 3686-3693.
[81]
Jiang, X. C.; Hu, J. S.; Lieber, A. M.; Jackan, C. S.; Biffinger, J. C.; Fitzgerald, L. A.; Ringeisen, B. R.; Lieber, C. M. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 2014, 14, 6737-6742.
[82]
Chong, G. W.; Karbelkar, A. A.; El-Naggar, M. Y. Nature’s conductors: What can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr. Opin. Chem. Biol. 2018, 47, 7-17.
[83]
Ueki, T.; Walker, D. J. F.; Tremblay, P. L.; Nevin, K. P.; Ward, J. E.; Woodard, T. L.; Nonnenmann, S. S.; Lovley, D. R. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth. Biol. 2019, 8, 1809-1817.
[84]
Dai, J. C.; Liu, Y. Q.; Liu, S. Y.; Li, S. Y.; Gao, N.; Wang, J.; Zhou, J. Z.; Qiu, D. R. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol. 2019, 19, 173.
[85]
Deutschbauer, A.; Price, M. N.; Wetmore, K. M.; Shao, W. J.; Baumohl, J. K.; Xu, Z. C.; Nguyen, M.; Tamse, R.; Davis, R. W.; Arkin, A. P. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet. 2011, 7, e1002385.
[86]
Coppi, M. V.; Leang, C.; Sandler, S. J.; Lovley, D. R. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 2001, 67, 3180-3187.
[87]
Nguyen, P. Q.; Courchesne, N. M. D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N. S. Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 2018, 30, 1704847.
[88]
Webster, D. P.; TerAvest, M. A.; Doud, D. F. R.; Chakravorty, A.; Holmes, E. C.; Radens, C. M.; Sureka, S.; Gralnick, J. A.; Angenent, L. T. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 2014, 62, 320-324.
[89]
Tschirhart, T.; Kim, E.; McKay, R.; Ueda, H.; Wu, H. C.; Pottash, A. E.; Zargar, A.; Negrete, A.; Shiloach, J.; Payne, G. F. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 2017, 8, 14030.
[90]
TerAvest, M. A.; Li, Z. J.; Angenent, L. T. Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ. Sci. 2011, 4, 4907-4916.
[91]
Tamsir, A.; Tabor, J. J.; Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 2011, 469, 212-215.
[92]
Tabor, J. J.; Salis, H. M.; Simpson, Z. B.; Chevalier, A. A.; Levskaya, A.; Marcotte, E. M.; Voigt, C. A.; Ellington, A. D. A synthetic genetic edge detection program. Cell 2009, 137, 1272-1281.
[93]
Li, Z. J.; Rosenbaum, M. A.; Venkataraman, A.; Tam, T. K.; Katz, E.; Angenent, L. T. Bacteria-based AND logic gate: A decision-making and self-powered biosensor. Chem. Commun. 2011, 47, 3060-3062.
[94]
Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102-1115.
[95]
Tolker-Nielsen, T.; Molin, S. Spatial organization of microbial biofilm communities. Microb. Ecol. 2000, 40, 75-84.
[96]
Darch, S. E.; Simoska, O.; Fitzpatrick, M.; Barraza, J. P.; Stevenson, K. J.; Bonnecaze, R. T.; Shear, J. B.; Whiteley, M. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc. Natl. Acad. Sci. USA 2018, 115, 4779-4784.
[97]
Hsu, L.; Deng, P.; Zhang, Y. X.; Jiang, X. C. Core/shell bacterial cables: A one-dimensional platform for probing microbial electron transfer. Nano Lett. 2018, 18, 4606-4610.
[98]
Knowlton, S.; Onal, S.; Yu, C. H.; Zhao, J. J.; Tasoglu, S. Bioprinting for cancer research. Trends Biotechnol. 2015, 33, 504-513.
[99]
Gu, Q.; Tomaskovic-Crook, E.; Wallace, G. G.; Crook, J. M. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv. Healthc. Mater. 2017, 6, 1700175.
[100]
Espinosa-Hoyos, D.; Jagielska, A.; Homan, K. A.; Du, H. F.; Busbee, T.; Anderson, D. G.; Fang, N. X.; Lewis, J. A.; Van Vliet, K. J. Engineered 3D-printed artificial axons. Sci. Rep. 2018, 8, 478.
[101]
Kolesky, D. B.; Homan, K. A.; Skylar-Scott, M. A.; Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 2016, 113, 3179-3184.
[102]
Qian, F.; Zhu, C.; Knipe, J. M.; Ruelas, S.; Stolaroff, J. K.; DeOtte, J. R.; Duoss, E. B.; Spadaccini, C. M.; Henard, C. A.; Guarnieri, M. T. et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 2019, 19, 5829-5835.
[103]
Hsu, L.; Jiang, X. C. ‘Living’ inks for 3D bioprinting. Trends Biotechnol. 2019, 37, 795-796.
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 October 2019
Accepted: 12 November 2019
Published: 25 November 2019
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

X. C. J. acknowledges the funding support from National Science Foundation (DMR-1652095, CBET-1803907) and Air Force Office of Scientific Research (FA9550-18-1-0128).

Return