Journal Home > Volume 13 , Issue 1

Multicolor emissive carbon dots (M-CDs) have tremendous potential applications in manifold fields of bioimaging, biomedicine and light-emitting devices. Until now, it is still difficult to produce fluorescence tunable CDs with high quantum yield across the entire visible spectra. In this work, a type of M-CDs with concentration-tunable fluorescence and solvent-affected aggregation states was synthesized by solvothermal treatment of citric acid (CA) and 1-(2-pyridylazo)-2-naphthol (PAN) and the formation mechanism was monitored by different reaction time and raw material ratio. The fluorescence spectra of M-CDs in organic solvents can range from 350 to 750 nm by adjusting the concentration. M-CDs possess different aggregation states in water and organic solvents, accompanied by different fluorescence emission, which is attributed to the different surface states of various component CDs in M-CDs. Moreover, the obtained products can be uniformly dispersed into polymethylmethacrylate (PMMA) solutions as well as epoxy resins to fabricate transparent CDs/PMMA films and CDs/epoxy composites, which can effectively prevent the aggregation and produce multicolor and white light-emitting diodes (WLED). In addition, the prepared WLED with Commission Internationale de L'Eclairage (CIE) of (0.29, 0.31) by using M-CDs/epoxy resin as packages, demonstrating the M-CDs exhibit potential applications for light-emitting devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes

Show Author's information Fanyong Yan1( )Yingxia Jiang1Xiaodong Sun1Junfu Wei1( )Liang Chen2Yuyang Zhang1
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
Graduate School of Life Science, Hokkaido University, Sapporo 0010024, Japan

Abstract

Multicolor emissive carbon dots (M-CDs) have tremendous potential applications in manifold fields of bioimaging, biomedicine and light-emitting devices. Until now, it is still difficult to produce fluorescence tunable CDs with high quantum yield across the entire visible spectra. In this work, a type of M-CDs with concentration-tunable fluorescence and solvent-affected aggregation states was synthesized by solvothermal treatment of citric acid (CA) and 1-(2-pyridylazo)-2-naphthol (PAN) and the formation mechanism was monitored by different reaction time and raw material ratio. The fluorescence spectra of M-CDs in organic solvents can range from 350 to 750 nm by adjusting the concentration. M-CDs possess different aggregation states in water and organic solvents, accompanied by different fluorescence emission, which is attributed to the different surface states of various component CDs in M-CDs. Moreover, the obtained products can be uniformly dispersed into polymethylmethacrylate (PMMA) solutions as well as epoxy resins to fabricate transparent CDs/PMMA films and CDs/epoxy composites, which can effectively prevent the aggregation and produce multicolor and white light-emitting diodes (WLED). In addition, the prepared WLED with Commission Internationale de L'Eclairage (CIE) of (0.29, 0.31) by using M-CDs/epoxy resin as packages, demonstrating the M-CDs exhibit potential applications for light-emitting devices.

Keywords: formation mechanism, carbon dots, concentration-tunable fluorescence, solvent-affected aggregation states, light-emitting devices

References(43)

[1]
Xu, Q.; Li, B. F.; Ye, Y. C.; Cai, W.; Li, W. J.; Yang, C. Y.; Chen, Y. S.; Xu, M.; Li, N.; Zheng, X. S. et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691-3701.
[2]
Bi, Z. H.; Li, T. W.; Su, H.; Ni, Y.; Yan, L. F. Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustainable Chem. Eng. 2018, 6, 9314-9323.
[3]
Yan, F. Y.; Sun, Z. H.; Zhang, H.; Sun, X. D.; Jiang, Y. X.; Bai, Z. J. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchim. Acta 2019, 186, 583.
[4]
Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 2017, 5, 1700416.
[5]
Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
[6]
Yuan, B.; Guan, S. Y.; Sun, X. M.; Li, X. M.; Zeng, H. B.; Xie, Z.; Chen, P.; Zhou, S. Y. Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 16005-16014.
[7]
Mao, L. H.; Tang, W. Q.; Deng, Z. Y.; Liu, S. S.; Wang, C. F.; Chen, S. Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res. 2014, 53, 6417-6425.
[8]
Jung, K. K.; Bae, S.; Yi, Y.; Park, M. J.; Kim, S. J.; Myong, N.; Lee, C. L.; Hong, B.; Park, J. H. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes. Sci. Rep. 2015, 5, 11032.
[9]
He, J. L.; He, Y. L.; Chen, Y. H.; Lei, B. F.; Zhuang, J. L.; Xiao, Y.; Liang, Y. R.; Zheng, M. T.; Zhang, H. R.; Liu, Y. L. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies. Small 2017, 13, 1700075.
[10]
Zhu, J. Y.; Bai, X.; Zhai, Y.; Chen, X.; Zhu, Y. S.; Pan, G. C.; Zhang, H. Z.; Dong, B.; Song, H. W. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. J. Mater. Chem. C 2017, 5, 11416-11420.
[11]
Chiang, C. L.; Wu, M. F.; Dai, D. C.; Wen, Y. S.; Wang, J. K.; Chen, C. T. Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater. 2005, 15, 231-238.
[12]
Ooyama, Y.; Yoshikawa, S.; Watanabe, S.; Yoshida, K. Molecular design of novel non-planar heteropolycyclic fluorophores with bulky substituents: Convenient synthesis and solid-state fluorescence characterization. Org. Biomol. Chem. 2006, 4, 3406-3409.
[13]
Na, W. D.; Qu, Z. Y.; Chen, X. Q.; Su, X. G. A turn-on fluorescent probe for sensitive detection of sulfide anions and ascorbic acid by using sulfanilic acid and glutathione functionalized graphene quantum dots. Sens. Actuator B: Chem. 2018, 256, 48-54.
[14]
Hu, Y. P.; Yang, J.; Jia, L.; Yu, J. S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon 2015, 93, 999-1007.
[15]
Hinterberger, V.; Wang, W. S.; Damm, C.; Wawra, S.; Thoma, M.; Peukert, W. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Opt. Mater. 2018, 80, 110-119.
[16]
Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659-8668.
[17]
Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484-491.
[18]
Yan, F. Y.; Bai, Z. J.; Zu, F. L.; Zhang, Y.; Sun, X. D.; Ma, T. C.; Chen, L. Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim. Acta 2019, 186, 113-118.
[19]
Yan, F. Y.; Zu, F. Y.; Xu, J. X.; Zhou, X. G.; Bai, Z. J.; Ma, C.; Luo, Y. M.; Chen, L. Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sens. Actuator B: Chem. 2019, 287, 231-240.
[20]
Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale 2013, 5, 2655-2658.
[21]
Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.
[22]
Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.
[23]
Grissa, R.; Abramova, A.; Tambio, S. J.; Lecuyer, M.; Deschamps, M.; Fernandez, V.; Greneche, J. M.; Guyomard, D.; Lestriez, B.; Moreau, P. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-ion batteries: An XPS and XPS imaging study. ACS Appl. Mater. Interfaces 2019, 11, 18368-18376.
[24]
Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Bai, Z. J.; Zhang, Y.; Zhou, X. G. Surface modification and chemical functionalization of carbon dots: A review. Microchim. Acta 2018, 185, 424.
[25]
Xu, X.; He, L.; Long, Y. W.; Pan, S.; Liu, H.; Yang, J. D.; Hu, X. L. S-doped carbon dots capped ZnCdTe quantum dots for ratiometric fluorescence sensing of guanine. Sens. Actuator B: Chem. 2019, 279, 44-52.
[26]
Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800-2814.
[27]
Zhang, Y. Q.; Zhuo, P.; Yin, H.; Fan, Y.; Zhang, J. H.; Liu, X. Y.; Chen, Z. Q. Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies. ACS Appl. Mater. Interfaces 2019, 11, 24395-24403.
[28]
Zhou, Y. F.; Benetti, D.; Tong, X.; Jin, L.; Wang, Z. M.; Ma, D. L.; Zhao, H. G.; Rosei, F. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 2018, 44, 378-387.
[29]
Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem., Int. Ed. 2017, 56, 9910-9914.
[30]
Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669-1674.
[31]
Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204-7219.
[32]
Lu, S. Y.; Cong, R. D.; Zhu, S. J.; Zhao, X. H.; Liu, J. J.; Tse, J. S.; Meng, S.; Yang, B. pH-dependent synthesis of novel structure-controllable polymer-carbon nanodots with high acidophilic luminescence and super carbon dots assembly for white light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 4062-4068.
[33]
Wang, C.; Zhou, J. D.; Ran, G. X.; Li, F.; Zhong, Z.; Song, Q. J.; Dong, Q. C. Bi-functional fluorescent polymer dots: A one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J. Mater. Chem. C 2017, 5, 434-443.
[34]
Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970-2974.
[35]
Han, L.; Liu, S. G.; Dong, J. X.; Liang, J. Y.; Li, L. J.; Li, N. B.; Luo, H. Q. Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. J. Mater. Chem. C 2017, 5, 10785-10793.
[36]
Zhang, T. Y.; Zhao, F. F.; Li, L.; Qi, B.; Zhu, D. X.; Lü, J. H.; Lü, C. L. Tricolor white-light-emitting carbon dots with multiple-cores@shell structure for WLED application. ACS Appl. Mater. Interfaces 2018, 10, 19796-19805.
[37]
Kwon, W.; Do, S.; Lee, J.; Hwang, S.; Kim, J. K.; Rhee, S. W. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices. Chem. Mater. 2013, 25, 1893-1899.
[38]
Mintz, K. J.; Zhou, Y. Q.; Leblanc, R. M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019, 11, 4634-4652.
[39]
Li, H.; Zhang, Z. E.; Liu, Y. L.; Cen, W. L.; Luo, X. B. Functional group effects on the HOMO-LUMO gap of g-C3N4. Nanomaterials 2018, 8, 589.
[40]
Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.
[41]
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
[42]
Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429-472.
[43]
Wang, C.; Hu, T. T.; Chen, Y. Y.; Xu, Y. L.; Song. Q, J. Polymer-assisted self-assembly of multicolor carbon dots as solid-state phosphors for fabrication of warm, high-quality, and temperature-responsive white-light-emitting devices. ACS Appl. Mater. Interfaces 2019, 11, 22332-22338.
File
12274_2019_2569_MOESM1_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 September 2019
Revised: 10 November 2019
Accepted: 12 November 2019
Published: 04 December 2019
Issue date: January 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

The work described in this manuscript was supported by the National Natural Science Foundation of China (Nos. 51678409, 51638011 and 51578375), Tianjin Research Program of Application Foundation and Advanced Technology (Nos. 18JCYBJC87500 and 15ZCZDSF00880), State Key Laboratory of Separation Membranes and Membrane Processes (No. Z1-201507), and the Program for Innovative Research Team in University of Tianjin (No. TD13-5042).

Return