Journal Home > Volume 12 , Issue 12

Though it is well recognized that the space between graphene cover and the metal substrate can act as a two-dimensional (2D) nanoreactor, several issues are still unresolved, including the role of the metal substrate, the mechanisms ruling water intercalation and the identification of sites at which water is decomposed. Here, we solve these issues by means of density functional theory and high-resolution electron energy loss spectroscopy experiments carried out on graphene grown on (111)-oriented Cu foils. Specifically, we observe decomposition of H2O at room temperature with only H atoms forming bonds with graphene and with buried OH groups underneath the graphene cover. Our theoretical model discloses physicochemical mechanisms ruling the migration and decomposition of water on graphene/Cu. We discover that the edge of graphene can be easily saturated by H through decomposition of H2O, which allows H2O to migrate in the subsurface region from the decoupled edge, where H2O decomposes at room temperature. Hydrogen atoms produced by the decomposition of H2O initially form a chemical bond with graphene for the lower energy barrier compared with other routes. These findings are essential to exploit graphene/Cu interfaces in catalysis and in energy-related applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting

Show Author's information Guangyu He1Qi Wang1Hak Ki Yu2Daniel Farías3,4Yingchun Liu1( )Antonio Politano5,6( )
Department of ChemistryZhejiang UniversityHangzhou310027China
Department of Materials Science and Engineering and Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadrid28049Spain
Department of Physical and Chemical SciencesUniversity of L'Aquila, Via Vetoio 10, L'Aquila, I-67100Italy
CNR-IMM Istituto per la Microelettronica e MicrosistemiVIII strada 5, Catania, I-95121Italy

Abstract

Though it is well recognized that the space between graphene cover and the metal substrate can act as a two-dimensional (2D) nanoreactor, several issues are still unresolved, including the role of the metal substrate, the mechanisms ruling water intercalation and the identification of sites at which water is decomposed. Here, we solve these issues by means of density functional theory and high-resolution electron energy loss spectroscopy experiments carried out on graphene grown on (111)-oriented Cu foils. Specifically, we observe decomposition of H2O at room temperature with only H atoms forming bonds with graphene and with buried OH groups underneath the graphene cover. Our theoretical model discloses physicochemical mechanisms ruling the migration and decomposition of water on graphene/Cu. We discover that the edge of graphene can be easily saturated by H through decomposition of H2O, which allows H2O to migrate in the subsurface region from the decoupled edge, where H2O decomposes at room temperature. Hydrogen atoms produced by the decomposition of H2O initially form a chemical bond with graphene for the lower energy barrier compared with other routes. These findings are essential to exploit graphene/Cu interfaces in catalysis and in energy-related applications.

Keywords: room temperature, intercalation, water splitting, graphene/metal interfaces

References(44)

1

Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.

2

Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258–10266.

3

Ran, J.; Chu, C. Q.; Pan, T.; Ding, L.; Cui, P.; Fu, C. F.; Zhang, C. L.; Xu, T. W. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A 2019, 7, 8085–8091.

4

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.

5

Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L. M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A. Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green's functions-density functional tight-binding study. Nano Res. 2019, 12, 791–799.

6

Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

7

Politano, A.; Chiarello, G. Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res. 2015, 8, 1847–1856.

8

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

9

Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662–5668.

10

Fu, Q.; Bao, X. H. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal. 2015, 36, 517–519.

11

Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed. 2012, 51, 4856–4859.

12

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

13

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

14

Gao, L. J.; Fu, Q.; Li, J. M.; Qu, Z. P.; Bao, X. H. Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon 2016, 101, 324–330.

15

Ferrighi, L.; Di Valentin, C. Oxygen reactivity on pure and B-doped graphene over crystalline Cu(111). Effects of the dopant and of the metal support. Surf. Sci. 2015, 634, 68–75.

16

Zhang, Y. H.; Fu, Q.; Cui, Y.; Mu, R. T.; Jin, L.; Bao, X. H. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys. 2013, 15, 19042–19048.

17

Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

18

Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D. et al. Unveiling the mechanisms leading to H2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano 2016, 10, 4543–4549.

19

Politano, A.; Marino, A. R.; Formoso, V.; Chiarello, G. Water adsorption on graphene/Pt(111) at room temperature: A vibrational investigation. AIP Adv. 2010, 1, 042130.

20

Politano, A.; Chiarello, G. Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon 2013, 61, 412–417.

21

Zhao, W.; Carey, S. J.; Mao, Z. T.; Campbell, C. T. Adsorbed hydroxyl and water on Ni(111): Heats of formation by calorimetry. ACS Catal. 2018, 8, 1485–1489.

22

Lew, W.; Crowe, M. C.; Karp, E.; Lytken, O.; Farmer, J. A.; árnadóttir, L.; Schoenbaum, C.; Campbell, C. T. The energy of adsorbed hydroxyl on Pt(111) by microcalorimetry. J. Phys. Chem. C 2011, 115, 11586–11594.

23

Fisher, G. B.; Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett. 1980, 44, 683–686.

24

Revilla-López, G.; Blonski, P.; López, N. Free energy assessment of water structures and their dissociation on Ru(0001). J. Phys. Chem. C 2015, 119, 5478–5483.

25

Jiang, B.; Ren, X. F.; Xie, D. Q.; Guo, H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc. Natl. Acad. Sci. USA 2012, 109, 10224–10227.

26

Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.

27

Yu, H. K.; Balasubramanian, K.; Kim, K.; Lee, J. L.; Maiti, M.; Ropers, C.; Krieg, J.; Kern, K.; Wodtke, A. M. Chemical vapor deposition of graphene on a "peeled-off" epitaxial Cu(111) foil: A simple approach to improved properties. ACS Nano 2014, 8, 8636–8643.

28

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009, 21, 395502.

29

Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.

30

Chen, W.; Cui, P.; Zhu, W. G.; Kaxiras, E.; Gao. Y. F.; Zhang, Z. Y. Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys. Rev. B 2015, 91, 045408.

31

Wu, P.; Zhai, X. F.; Li, Z. Y.; Yang, J. L. Bilayer graphene growth via a penetration mechanism. J. Phys. Chem. C 2014, 118, 6201–6206.

32

Wong, K.; Kang, S. J.; Bielawski, C. W.; Ruoff, R. S.; Kwak, S. K. First-principles study of the role of O2 and H2O in the decoupling of graphene on Cu(111). J. Am. Chem. Soc. 2016, 138, 10986–10994.

33

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

34

Politano, A.; Yu, H. K.; Farías, D.; Chiarello, G. Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Phys. Rev. B 2018, 97, 035414.

35

Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.

36

Ibach, H.; Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations; Academic Press: New York, 1982.

DOI
37

Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Hydroxyl-induced wetting of metals by water at near-ambient conditions. J. Phys. Chem. C 2007, 111, 7848–7850.

38

Tian, J. F.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett. 2011, 11, 3663–3668.

39

Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys. Rev. B 2012, 86, 045442.

40

Nilsson, L.; Andersen, M.; Hammer, B.; Stensgaard, I.; Hornekær, L. Breakdown of the graphene coating effect under sequential exposure to O2 and H2S. J. Phys. Chem. Lett. 2013, 4, 3774–3774.

41

Tang, Q. L.; Chen, Z. X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf. Sci. 2007, 601, 954–964.

42

Yang, L.; Li, X. Y.; Zhang, G. Z.; Cui, P.; Wang, X. J.; Jiang, X.; Zhao, J.; Luo, Yi.; Jiang, J. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun. 2017, 8, 16049.

43

Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems; Wiley-Interscience: New York, 2001.

44

Wang, X. J.; Zhang, G. Z.; Wang, Z. W.; Yang, L.; Li, X. Y.; Jiang, J.; Luo, Y. Metal-enhanced hydrogenation of graphene with atomic pattern. Carbon 2019, 143, 700–705.

File
12274_2019_2561_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2019
Revised: 14 October 2019
Accepted: 04 November 2019
Published: 14 November 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21676232 and 21673206). A. P. thanks Danil W. Boukhvalov for scientific discussions and Vito Fabio for technicalsupport for the HREELS experiments. D. F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Maria de Maeztu Programme for Units of Excellencein R & D (No. MDM-2014-0377) and MINECO project MAT2015-65356-C3-3-R.

Return