Journal Home > Volume 12 , Issue 12

The monolayer WSe2 is interesting and important for future application in nanoelectronics, spintronics and valleytronics devices, because it has the largest spin splitting and longest valley coherence time among all the known monolayer transition-metal dichalcogenides (TMDs). To obtain the large-area monolayer TMDs crystal is the first step to manufacture scalable and high-performance electronic devices. In this letter, we have successfully fabricated millimeter-sized monolayer WSe2 single crystals with very high quality, based on our improved mechanical exfoliation method. With such superior samples, using standard high resolution angle-resolved photoemission spectroscopy, we did comprehensive electronic band structure measurements on our monolayer WSe2. The overall band features point it to be a 1.2 eV direct band gap semiconductor. Its spin splitting of the valence band at K point is found as 460 meV, which is 30 meV less than the corresponding band splitting in its bulk counterpart. The effective hole masses of valence bands are determined as 2.344 me at Γ, and 0.529 me as well as 0.532 me at K for the upper and lower branch of splitting bands, respectively. And screening effect from substrate is shown to substantially impact on the electronic properties. Our results provide important insights into band structure engineering in monolayer TMDs. Our monolayer WSe2 crystals may constitute a valuable device platform.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer

Show Author's information Wenjuan Zhao1,2Yuan Huang1,2( )Cheng Shen1,2Cong Li1,2Yongqing Cai1,2Yu Xu1,2Hongtao Rong1,2Qiang Gao1,2Yang Wang1,2Lin Zhao1Lihong Bao1Qingyan Wang1Guangyu Zhang1Hongjun Gao1,2Zuyan Xu3Xingjiang Zhou1,2,4,5( )Guodong Liu1,4( )
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
Songshan Lake Materials LaboratoryDongguan523808China
Beijing Academy of Quantum Information SciencesBeijing100193China

Abstract

The monolayer WSe2 is interesting and important for future application in nanoelectronics, spintronics and valleytronics devices, because it has the largest spin splitting and longest valley coherence time among all the known monolayer transition-metal dichalcogenides (TMDs). To obtain the large-area monolayer TMDs crystal is the first step to manufacture scalable and high-performance electronic devices. In this letter, we have successfully fabricated millimeter-sized monolayer WSe2 single crystals with very high quality, based on our improved mechanical exfoliation method. With such superior samples, using standard high resolution angle-resolved photoemission spectroscopy, we did comprehensive electronic band structure measurements on our monolayer WSe2. The overall band features point it to be a 1.2 eV direct band gap semiconductor. Its spin splitting of the valence band at K point is found as 460 meV, which is 30 meV less than the corresponding band splitting in its bulk counterpart. The effective hole masses of valence bands are determined as 2.344 me at Γ, and 0.529 me as well as 0.532 me at K for the upper and lower branch of splitting bands, respectively. And screening effect from substrate is shown to substantially impact on the electronic properties. Our results provide important insights into band structure engineering in monolayer TMDs. Our monolayer WSe2 crystals may constitute a valuable device platform.

Keywords: electronic structure, monolayer, WSe2 , transition-metal dichalcogenides, angle-resolved photoemission spectroscopy

References(54)

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

2

Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zett, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

3

Liu, H.; Neal, A. T.; Zhu, Z; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4011.

4

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

5

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

6

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

7

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

8

Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.

9

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

10

Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.

11

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

12

Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B 2012, 85, 186.

13

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

14

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

15

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

16

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

17

Riley, J. M.; Mazzola, F.; Dendzik, M.; Michiardi, M.; Takayama, T.; Bawden, L.; Granerød, C.; Leandersson, M.; Balasubramanian, T.; Hoesch, M. et al. Direct observation of spin-polarized bulk bands in an inversionsymmetric semiconductor. Nat. Phys. 2014, 10, 835–839.

18

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, T.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

19

Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

20

Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

21

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

22

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

23

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

24

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

25

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

26

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

27

Zhang, Y.; Ugeda, M. M.; Jin, C. C.; Shi, S. F.; Bradley, A. J.; Martín- Recio, A.; Ryu, H.; Kim, J.; Tang, S. J.; Kim, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 2016, 16, 2485–2491.

28

Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677–682.

29

Le, D.; Barinov, A.; Preciado, E.; Isarraraz, M.; Tanabe, I.; Komesu, T.; Troha, C.; Bartels, L.; Rahman, T. S.; Dowben, P. A. Spin-orbit coupling in the band structure of monolayer WSe2. J. Phys. : Condens. Matter 2015, 27, 182201.

30

Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, V.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

31

Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, T.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9, 10612–10620.

32

Liu, G. D.; Wang, G. L.; Zhu, Y.; Zhang, H. B.; Zhang, G. C.; Wang, X. Y.; Zhou, Y.; Zhang, W. T; Liu, H. Y.; Zhao, L. et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum. 2008, 79, 023105.

33

Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F.; de Groot, R. A.; Wold, A. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 1987, 35, 6195–6202.

34

Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

35

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K. et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

36

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

37

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

38

Huang, Y.; Wang, X.; Zhang, X.; Chen, X. J.; Li, B. W.; Wang, B.; Huang, M.; Zhu, C. Y.; Zhang, X. W.; Bacsa, W. S. et al. Raman spectral band oscillations in large graphene bubbles. Phy. Rev. Lett. 2018, 120, 186104.

39

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

40

Zibouche, N.; Kuc, A.; Musfeldt, J.; Heine, T. Transition-metal dichalcogenides for spintronic applications. Ann. Phys. 2014, 526, 395–401.

41

Dendzik, M.; Michiardi, M.; Sanders, C.; Bianchi, C.; Miwa, J. A.; Grønborg, S. S.; Lauritsen, J. V.; Bruix, A.; Hammer, B.; Hofmann, P. Growth and electronic structure of epitaxial single-layer WS2 on Au(111). Phy. Rev. B 2015, 92, 245442.

42

Miwa, J. A.; Ulstrup, S.; Sørensen, S. G.; Dendzik, M.; Čabo, A. G.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P. Electronic structure of epitaxial single-layer MoS2. Phy. Rev. Lett. 2015, 114, 046802.

43

Shanavas, S. K.; Satpathy, S. Effective tight-binding model for MX2 under electric and magnetic fields. Phys. Rev. B 2015, 91, 235145.

44

Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.

45

Ci, P. H.; Chen, P. B.; Kang, J.; Suzuki, R.; Choe, H. S.; Suh, J.; Ko, C.; Park, T.; Shen, K.; Iwasa, Y. et al. Quantifying van der Waals interactions in layered transition metal dichalcogenides from pressure-enhanced valence band splitting. Nano Lett. 2017, 17, 4982–4988.

46

Dou, X. M.; Ding, K.; Jiang, D. S.; Fan, X. F.; Sun, B. Q. Probing spin- orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 2016, 10, 1619–1624.

47

Zhang, Y. W.; Li, H.; Wang, H. M.; Liu, R.; Zhang, R. L.; Qiu, Z. J. On valence-band splitting in layered MoS2. ACS Nano, 2015, 9, 8514–8519.

48

Fan, X. F.; Singh, D. J.; Zheng, W. T. Valence band splitting on multilayer MoS2: Mixing of spin?orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 2016, 7, 2175–2781.

49

Alidoust, N.; Bian, G.; Xu, S. Y.; Sankar, R.; Neupane, M.; Liu, C.; Belopolski, I.; Qu, D. X.; Denlinger, J. D.; Chou, F. C. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 2014, 5, 4673.

50

Smith, N. V.; Fisher, G. B. Photoemission studies of the alkali metals. II. Rubidium and cesium. Phys. Rev. B 1971, 3, 3662.

51

Adelung, R.; Brandt, J.; Kipp, L.; Skibowski, M. Reconfiguration of charge density waves by surface nanostructures on TaS2. Phys. Rev. B 2000, 63, 165327.

52

Chiang, T. C. Photoemission studies of quantum well states in thin films. Surf. Sci. Rep. 2000, 39, 181–235.

53

Absor, M. A. U.; Kotaka, H.; Ishii, F.; Saito, M. Strain-controlled spin splitting in the conduction band of monolayer WS2. Phys. Rev. B 2016, 94, 115131.

54

Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal'ko, V. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2015, 2, 022001.

File
12274_2019_2557_MOESM1_ESM.pdf (995 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2019
Revised: 16 October 2019
Accepted: 31 October 2019
Published: 16 November 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Science Foundation of China (Nos. 11574367 and 11874405), the National Key Research and Development Program of China (Nos. 2016YFA0300600, 2018YFA0704200, and 2019YFA0308000), and the Youth Innovation Promotion Association of CAS (Nos. 2017013 and 2019007).

Return