Journal Home > Volume 12 , Issue 12

The matrix assembly cluster source (MACS) represents a bridge between conventional instruments for cluster beam deposition (CBD) and the level of industrial production. The method is based on Ar+ ion sputtering of a pre-condensed Ar-M matrix (where M, is typically a metal such as Ag). Each Ar+ ion produces a collision cascade and thus the formation of metal clusters is in the matrix, which are then sputtered out. Here we present an experimental and computational investigation of the cluster emission process, specifically its dependence on the Ar+ ion angle of incidence and the cluster emission angle. We find the incidence angle strongly influences the emerging cluster flux, which is assigned to the spatial location of the deposited primary ion energy relative to the cluster into the matrix. We also found an approximately constant angle between the incident ion beam and the peak in the emitted cluster distribution, with value between 99° and 109°.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Angular dependence of nanoparticle generation in the matrix assembly cluster source

Show Author's information Maria Chiara Spadaro1,Junlei Zhao2William D. Terry3Jian Liu3,4Feng Yin5Flyura Djurabekova2Richard E. Palmer1( )
College of EngineeringSwansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN
Department of Physics and Helsinki Institute of PhysicsUniversity of Helsinki, P. O. Box43, FIN-00014, HelsinkiFinland
Nanoscale Physics Research LaboratorySchool of Physics and AstronomyUniversity of Birmingham, Birmingham, B152TTUK
National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)The State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710062China

Present address: Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

Abstract

The matrix assembly cluster source (MACS) represents a bridge between conventional instruments for cluster beam deposition (CBD) and the level of industrial production. The method is based on Ar+ ion sputtering of a pre-condensed Ar-M matrix (where M, is typically a metal such as Ag). Each Ar+ ion produces a collision cascade and thus the formation of metal clusters is in the matrix, which are then sputtered out. Here we present an experimental and computational investigation of the cluster emission process, specifically its dependence on the Ar+ ion angle of incidence and the cluster emission angle. We find the incidence angle strongly influences the emerging cluster flux, which is assigned to the spatial location of the deposited primary ion energy relative to the cluster into the matrix. We also found an approximately constant angle between the incident ion beam and the peak in the emitted cluster distribution, with value between 99° and 109°.

Keywords: silver, nanoparticles, cluster beam deposition scale-up, ligand-free, green synthesis

References(29)

1

Knight, W. D.; Clemenger, K.; De Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.

2

Echt, O.; Sattler, K.; Recknagel, E. Magic numbers for sphere packings: Experimental verification in free xenon clusters. Phys. Rev. Lett. 1981, 47, 1121–1124.

3

Palmer, R. E.; Pratontep, S.; Boyen, H. G. Nanostructured surfaces from size-selected clusters. Nat. Mater. 2003, 2, 443–448.

4

Palmer, R. E.; Cai, R. S.; Vernieres, J. Synthesis without solvents: The cluster (nanoparticle) beam route to catalysts and sensors. Acc. Chem. Res. 2018, 51, 2296–2304.

5

Grammatikopoulos, P.; Steinhauer, S.; Vernieres, J.; Singh, V.; Sowwan, M. Nanoparticle design by gas-phase synthesis. Adv. Phys. X 2016, 1, 81–100.

6

D'Addato, S.; Spadaro, M. C. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: Control of structure and functional properties. Phys. Scr. 2018, 93, 033001.

7

Spadaro, M. C.; Luches, P.; Bertoni, G.; Grillo, V.; Turner, S.; Van Tendeloo, G.; Valeri, S.; D'Addato, S. Influence of defect distribution on the reducibility of CeO2-x nanoparticles. Nanotechnology 2016, 27, 425705.

8

Singh, A. V.; Vyas, V.; Patil, R.; Sharma, V.; Scopelliti, P. E.; Bongiorno, G.; Podestà, A.; Lenardi, C.; Gade, W. N.; Milani, P. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One 2011, 6, e25029.

9

von Issendorff, B.; Palmer, R. E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 1999, 70, 4497–4501.

10

Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogués, J. Beating the superparamagnetic limit with exchange bias. Nature 2003, 423, 850–853.

11

Benelmekki, M.; Bohra, M.; Kim, J. H.; Diaz, R. E.; Vernieres, J.; Grammatikopoulos, P.; Sowwan, M. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale 2014, 6, 3532–3535.

12

D'Addato, S.; Pinotti, D.; Spadaro, M. C.; Paolicelli, G.; Grillo, V.; Valeri, S.; Pasquali, L.; Bergamini, L.; Corni, S. Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx. Beilstein J. Nanotechnol. 2015, 6, 404–413.

13

Pelli Cresi, J. S.; Spadaro, M. C.; D'Addato, S.; Valeri, S.; Benedetti, S.; Di Bona, A.; Catone, D.; Di Mario, L.; O'Keeffe, P.; Paladini, A. et al. Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles. Nanoscale 2019, 11, 10282–10291.

14

Baxter, E. T.; Ha, M. A.; Cass, A. C.; Alexandrova, A. N.; Anderson, S. L. Ethylene dehydrogenation on Pt4, 7, 8 clusters on Al2O3: Strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 2017, 7, 3322–3335.

15

Carbone, R.; Giorgetti, L.; Zanardi, A.; Marangi, I.; Chierici, E.; Bongiorno, G.; Fiorentini, F.; Faretta, M.; Piseri, P.; Pelicci, P. G. et al. Retroviral microarray-based platform on nanostructured TiO2 for functional genomics and drug discovery. Biomaterials 2007, 28, 2244–2253.

16

Pratontep, S.; Carroll, S. J.; Xirouchaki, C.; Streun, M.; Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 2005, 76, 045103.

17

Wegner, K.; Piseri, P.; Tafreshi, H. V.; Milani, P. Cluster beam deposition: A tool for nanoscale science and technology. J. Phys. D Appl. Phys. 2006, 39, R439–R459.

18

Llamosa, D.; Ruano, M.; Martinez, L.; Mayoral, A.; Roman, E.; Garcia-Hernández, M.; Huttel, Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 2014, 6, 13483–13486.

19

Martínez, L.; Lauwaet, K.; Santoro, G.; Sobrado, J. M.; Peláez, R. J.; Herrero, V. J.; Tanarro, I.; Ellis, G. J.; Cernicharo, J.; Joblin, C. et al. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 2018, 8, 7250.

20

Kouznetsov, V.; Macák, K.; Schneider, J. M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999, 122, 290–293.

21

Palmer, R. E.; Cao, L.; Yin, F. Note: Proof of principle of a new type of cluster beam source with potential for scale-up. Rev. Sci. Instrum. 2016, 87, 046103.

22

Oiko, V. T. A.; Mathieu, T.; Cao, L.; Liu, J.; Palmer, R. E. Production of silver nanoclusters using a matrix-assembly cluster source with a solid CO2 matrix. J. Chem. Phys. 2016, 145, 166101.

23

Ellis, P. R.; Brown, C. M.; Bishop, P. T.; Yin, J. L.; Cooke, K.; Terry, W. D.; Liu, J.; Yin, F.; Palmer, R. E. The cluster beam route to model catalysts and beyond. Faraday Discuss. 2016, 188, 39–56.

24

Cai, R. S.; Jian, N.; Murphy, S.; Bauer, K.; Palmer, R. E. A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source. APL Mater. 2017, 5, 053405.

25

Xu, J. Y.; Murphy, S.; Xiong, D. H.; Cai, R. S.; Wei, X. K.; Heggen, M.; Barborini, E.; Vinati, S.; Dunin-Borkowski, R. E.; Palmer, R. E. et al. Cluster beam deposition of ultrafine cobalt and ruthenium clusters for efficient and stable oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 3013–3018.

26

Zhao, J. L.; Cao, L.; Palmer, R. E.; Nordlund, K.; Djurabekova, F. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source. Phys. Rev. Mater. 2017, 1, 066002.

27

Nordlund, K.; Djurabekova, F.; Hobler, G. Large fraction of crystal directions leads to ion channeling. Phys. Rev. B 2016, 94, 214109.

28

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19

29

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool modelling. Simul. Mater. Sci. Eng. 2010, 18, 015012.

Video
12274_2019_2553_MOESM1_ESM.mp4
File
12274_2019_2553_MOESM2_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 August 2019
Revised: 22 October 2019
Accepted: 27 October 2019
Published: 13 November 2019
Issue date: December 2019

Copyright

© The Author(s) 2019

Acknowledgements

Acknowledgements

We thank the EPSRC, the Leverhulme Trust, Innovate UK and the EU H2020 project CritCat (project ID: 686053) for their financial support. Research performed at the University of Helsinki was supported by the EU project M4F (project ID: 755039). The authors are also grateful to the Finnish IT Centre of Science, CSC, for grants of computational time. The MACS concept is the subject of the following patent applications: Palmer, R. E.; PCT Patent Application No. WO2013017870; Europe Patent Application No. EP2739565; China Patent Application No. CN103857618; Japan Patent Application No. JP6316748; U.S. Patent Application No. US10233545.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

Return