Journal Home > Volume 13 , Issue 7

Lithium ion batteries (LIBs) that can be operated under extended temperature range hold significant application potentials. Here in this work, we successfully synthesized Co2V2O7 electrode with rich porosity from a facile hydrothermal and combustion process. When applied as anode for LIBs, the electrode displayed excellent stability and rate performance in a wide range of temperatures. Remarkably, a stable capacity of 206 mAh·g-1 was retained after cycling at a high current density of 10 A·g-1 for 6,000 cycles at room temperature (25 °C). And even when tested under extreme conditions, i.e., -20 and 60 °C, the battery still maintained its remarkable stability and rate capability. For example, at -20 °C, a capacity of 633 mAh·g-1 was retained after 50 cycles at 0.1 A·g-1; and even after cycling at 60 °C at 10 A·g-1 for 1,000 cycles, a reversible capacity of 885 mAh·g-1 can be achieved. We believe the development of such electrode material will facilitate progress of the next-generation LIBs with wide operating windows.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Superior wide-temperature lithium storage in a porous cobalt vanadate

Show Author's information Haoliang Chen1Dan Yang1Xueye Zhuang1Dong Chen1Weiling Liu2Qi Zhang1Huey Hoon Hng2Xianhong Rui1,3( )Qingyu Yan2( )Shaoming Huang1( )
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China

Abstract

Lithium ion batteries (LIBs) that can be operated under extended temperature range hold significant application potentials. Here in this work, we successfully synthesized Co2V2O7 electrode with rich porosity from a facile hydrothermal and combustion process. When applied as anode for LIBs, the electrode displayed excellent stability and rate performance in a wide range of temperatures. Remarkably, a stable capacity of 206 mAh·g-1 was retained after cycling at a high current density of 10 A·g-1 for 6,000 cycles at room temperature (25 °C). And even when tested under extreme conditions, i.e., -20 and 60 °C, the battery still maintained its remarkable stability and rate capability. For example, at -20 °C, a capacity of 633 mAh·g-1 was retained after 50 cycles at 0.1 A·g-1; and even after cycling at 60 °C at 10 A·g-1 for 1,000 cycles, a reversible capacity of 885 mAh·g-1 can be achieved. We believe the development of such electrode material will facilitate progress of the next-generation LIBs with wide operating windows.

Keywords: porous structure, lithium-ion battery, anode material, cobalt vanadate, wide-temperature performance

References(51)

[1]
Wang, Z. L.; Xu, D.; Wang, L. M.; Zhang, X. B. Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem 2012, 77, 124-128.
[2]
Xu, G. J.; Huang, S. Q.; Cui, Z. L.; Du, X. F.; Wang, X.; Lu, D.; Shangguan, X. H.; Ma, J.; Han, P. X.; Zhou, X. H. et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery. J. Power Sources 2019, 416, 29-36.
[3]
Kafle, J.; Harris, J.; Chang, J.; Koshina, J.; Boone, D.; Qu, D. Y. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening. J. Power Sources 2018, 392, 60-68.
[4]
Wang, J.; Nie, P.; Xu, G. Y.; Jiang, J. M.; Wu, Y. T.; Fu, R. R.; Dou, H.; Zhang, X. G. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704808.
[5]
Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.
[6]
Lian, Q. W.; Zhou, G.; Liu, J. T.; Wu, C.; Wei, W. F.; Chen, L. B.; Li, C. C. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling. J. Power Sources 2017, 366, 1-8.
[7]
Chen, D.; Tan, H. T.; Rui, X. H.; Zhang, Q.; Feng, Y. Z.; Geng, H. B.; Li, C. C.; Huang, S. M.; Yu, Y. Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery. InfoMat 2019, 1, 251-259.
[8]
Li, H.; Peng, L.; Wu, D. B.; Wu, J.; Zhu, Y. J.; Hu, X. L. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1802930.
[9]
Tarascon, J. M.; Gozdz, A.; Schmutz, C.; Shokoohi, F.; Warren, P. Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 1996, 86, 49-54.
[10]
Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta 2004, 50, 247-254.
[11]
Jiang, Y.; Liu, Z. Y.; Matsuhisa, N.; Qi, D. P.; Leow, W. R.; Yang, H.; Yu, J. C.; Chen, G.; Liu, Y. Q.; Wan, C. J. et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 2018, 30, 1706589.
[12]
Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.
[13]
Ji, W. X.; Wang, F.; Liu, D. T.; Qian, J. F.; Cao, Y. L.; Chen, Z. X.; Yang, H. X.; Ai, X. P. Building thermally stable Li-ion batteries using a temperature-responsive cathode. J. Mater. Chem. A 2016, 4, 11239-11246.
[14]
Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, in press, .
[15]
Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157-3162.
[16]
Zhang, S. S.; Xu, K.; Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 2002, 4, 928-932.
[17]
Qin, R. H.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion batteries. J. Mater. Chem. A 2018, 6, 9737-9746.
[18]
Liu, Y.; Yang, B. C.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance. Angew. Chem., Int. Ed. 2017, 56, 16606-16610.
[19]
Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938-944.
[20]
Jiang, Z. Y.; Xie, H. Q.; Wang, S. Q.; Song, X.; Yao, X.; Wang, H. H. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 2018, 8, 1801433.
[21]
Xiang, H. F.; Chen, J. J.; Li, Z.; Wang, H. H. An inorganic membrane as a separator for lithium-ion battery. J. Power Sources 2011, 196, 8651-8655.
[22]
Yin, Z. G.; Qin, J. W.; Wang, W.; Cao, M. H. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy 2017, 31, 367-376.
[23]
Zhou, C. S.; Lu, J. M.; Hu, M. X.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. High areal capacity Li-ion storage of binder-free metal vanadate/carbon hybrid anode by ion-exchange reaction. Small 2018, 14, 1801832.
[24]
Lu, S. Y.; Zhu, T. X.; Li, Z. Y.; Pang, Y. C.; Shi, L.; Ding, S. J.; Gao, G. X. Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A 2018, 6, 7005-7013.
[25]
Liu, P. C.; Zhu, K. J.; Gao, Y. F.; Luo, H. J.; Lu, L. Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication. Adv. Energy Mater. 2017, 7, 1700547.
[26]
Li, M. L.; Gao, Y.; Chen, N.; Meng, X.; Wang, C. Z.; Zhang, Y. Q.; Zhang, D.; Wei, Y. J.; Du, F.; Chen, G. Cu3V2O8 nanoparticles as intercalation-type anode material for lithium-ion batteries. Chem.—Eur. J. 2016, 22, 11405-11412.
[27]
Zhang, X.; Yang, W. W.; Liu, J. G.; Zhou, Y.; Feng, S. C.; Yan, S. C.; Yao, Y. F.; Wang, G.; Wan, L.; Fang, C. et al. Ultralong metahewettite CaV6O16·3H2O nanoribbons as novel host materials for lithium storage: Towards high-rate and excellent long-term cyclability. Nano Energy 2016, 22, 38-47.
[28]
Wang, J. L.; Pei, J.; Hua, K.; Chen, D. H.; Jiao, Y.; Hu, Y. Y.; Chen, G. Synthesis of Co2V2O7 hollow cylinders with enhanced lithium storage properties using H2O2 as an etching agent. ChemElectroChem 2018, 5, 737-742.
[29]
Chu, X. F.; Wang, H.; Chi, Y. D.; Wang, C.; Lei, L.; Zhang, W. T.; Yang, X. T. Hard-template-engaged formation of Co2V2O7 hollow prisms for lithium ion batteries. RSC Adv. 2018, 8, 2072-2076.
[30]
Wu, F. F.; Yu, C. H.; Liu, W. X.; Wang, T.; Feng, J. K.; Xiong, S. L. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 2015, 3, 16728-16736.
[31]
Zhang, Q.; Pei, J.; Chen, G.; Bie, C. F.; Sun, J. X.; Liu, J. Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv. Mater. Interfaces 2017, 4, 1700054.
[32]
Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S. H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787-10791.
[33]
Luo, Y. Z.; Xu, X.; Zhang, Y. X.; Chen, C. Y.; Zhou, L.; Yan, M. Y.; Wei, Q. L.; Tian, X. C.; Mai, L. Q. Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 2812-2818.
[34]
Wang, Y. C.; Chai, H.; Dong, H.; Xu, J. Y.; Jia, D. Z.; Zhou, W. Y. Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 27291-27297.
[35]
Zhang, W. Y.; Fu, Y. S.; Liu, W. W.; Lim, L.; Wang, X.; Yu, A. P. A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 2019, 57, 48-56.
[36]
Sambandam, B.; Soundharrajan, V.; Mathew, V.; Song, J. J.; Kim, S.; Jo, J.; Tung, D. P.; Kim, S.; Kim, J. Metal-organic framework-combustion: A new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J. Mater. Chem. A 2016, 4, 14605-14613.
[37]
Soundharrajan, V.; Sambandam, B.; Song, J. J.; Kim, S.; Jo, J.; Kim, S.; Lee, S.; Mathew, V.; Kim, J. Co3V2O8 sponge network morphology derived from metal-organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 2016, 8, 8546-8553.
[38]
Jiang, T. C.; Bu, F. X.; Feng, X. X.; Shakir, I.; Hao, G. L.; Xu, Y. X. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017, 11, 5140-5147.
[39]
Yao, X.; Zhao, Y. L. Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2017, 2, 171-200.
[40]
Jung, H. G.; Jang, M. W.; Hassoun, J.; Sun, Y. K.; Scrosati, B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2011, 2, 516.
[41]
Chen, D.; Rui, X. H.; Zhang, Q.; Geng, H. B.; Gan, L. Y.; Zhang, W.; Li, C. C.; Huang, S. M.; Yu, Y. Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy 2019, 60, 171-178.
[42]
Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794-5800.
[43]
Yang, G. Z.; Cui, H.; Yang, G. W.; Wang, C. X. Self-Assembly of Co3V2O8 multilayered nanosheets: Controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 2014, 8, 4474-4487.
[44]
Lv, C. D.; Sun, J. X.; Chen, G.; Yan, C. S.; Chen, D. H. Achieving Ni3V2O8 amorphous wire encapsulated in crystalline tube nanostructure as anode materials for lithium ion batteries. Nano Energy 2017, 33, 138-145.
[45]
Zhu, C.; Liu, Z. Q.; Wang, J.; Pu, J.; Wu, W. L.; Zhou, Q. W.; Zhang, H. G. Novel Co2VO4 anodes using ultralight 3D metallic current collector and carbon sandwiched structures for high-performance Li-ion batteries. Small 2017, 13, 1701260.
[46]
Zhang, L.; Zhao, K. N.; Luo, Y. Z.; Dong, Y. F.; Xu, W. W.; Yan, M. Y.; Ren, W. H.; Zhou, L.; Qu, L. B.; Mai, L. Q. Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode. ACS Appl. Mater. Interfaces 2016, 8, 7139-7146.
[47]
Ma, F. X.; Wu, H. B.; Xu, C. Y.; Zhen, L.; Lou, X. W. D. Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties. Nanoscale 2015, 7, 4411-4414.
[48]
Zhang, D.; Li, G. S.; Li, B. Y.; Fan, J. M.; Liu, X. Q.; Chen, D. D.; Li, L. P. A facile strategy to fabricate V2O3/porous N-doped carbon nanosheet framework as high-performance anode for lithium-ion batteries. J. Alloys Compd. 2019, 789, 288-294.
[49]
Feng, Y. H.; Chen, S. H.; Wang, J.; Lu, B. G. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 2020, 43, 129-138.
[50]
Wang, T.; Zhu, J.; Wei, Z. X.; Yang, H. G.; Ma, Z. L.; Ma, R. F.; Zhou, J.; Yang, Y. H.; Peng, L. L.; Fei, H. L. et al. Bacteria derived biological carbon building robust Li-S batteries. Nano lett. 2019, 19, 4384-4390.
[51]
Wen, W.; Wu, J. M.; Jiang, Y. Z.; Lai, L. L.; Song, J. Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode. Chem 2017, 2, 404-416.
File
12274_2019_2547_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 September 2019
Revised: 10 October 2019
Accepted: 16 October 2019
Published: 26 October 2019
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 21606003, 51802044, 51972067, 51672193, 51420105002, and 51920105004), and State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization. The authors also acknowledge Singapore MOE AcRF Tier 2 under Grant Nos. 2018-T2-1-010 and MOE2017-T2-2-069, and National Research Foundation of Singapore (NRF) Investigatorship, award Number NRF2016NRF-NRFI001-22.

Return