Journal Home > Volume 12 , Issue 12

The simultaneous formation of single domain (3×3) and multi domain (√7×√7)R(±19.1°) germanene phases on Al(111) surface in the sub-monolayer range was studied using scanning tunneling microscopy (STM) and density functional theory (DFT) based simulations. Experimental results revealed that both germanene phases nucleate and grow independently from each other and regardless of Al substrate temperature within significantly expanded range Ts = 27–200 ℃. Our results unambiguously showed that STM images with hexagonal contrast yield correct-resolved structure for both germanene phases, while honeycomb contrast is a result of an artificial tip-induced STM resolution. First-principles calculations suggested atomic models with strongly buckled germanene (2×2)/Al(111)(3×3) and (√3×√3)R30°/Al(111)(√7×√7)R(±19.1°) with one of eight and one of six Ge atoms protruding upward respectively, that consistently describe the experimentally observed STM images both for single and multi domain surface phases. According to the DFT based simulations both germanene (2×2) and (√3×√3)R30° superstructures have a stretched lattice strain with respect to the ideal free-standing germanene by 6.2% and 13.9%, respectively. Hence, numerous small domains separated by domain boundaries in the (√3×√3)R307Al(111)(√7×√7)R(±19.1°) germanene phase tend to reduce the surface energy and prevent the formation of extended single domains, in contrast to the (2×2)/Al(111)(3×3) phase. However, our experimental results showed that the nucleation and growth of germanene on Al(111) surface yield strong modifications of Al surface even at room temperature (RT), which may be contributed to the formation of Al-Ge alloy due to Ge surface solid-states reactivity that was ignored in recent studies. It is already evident from our present findings that the role of Al atoms in the formation of (3×3) and (√7×√7)R(±19.1°) germanene phases is worthy to be carefully studied in the future, which could be an important knowledge for large-quantity fabrication of germanene on aluminum.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single and multi domain buckled germanene phases on Al(111) surface

Show Author's information Dmitriy A. Muzychenko1( )Sergey I. Oreshkin2Vladimir I. Panov1Chris Van Haesendonck3Andrey I. Oreshkin1
Faculty of PhysicsLomonosov Moscow State University119991Moscow, Russia
Sternberg Astronomical InstituteLomonosov Moscow State University119234Moscow, Russia
Solid-State Physics and Magnetism SectionKU Leuven, BE-3001, LeuvenBelgium

Abstract

The simultaneous formation of single domain (3×3) and multi domain (√7×√7)R(±19.1°) germanene phases on Al(111) surface in the sub-monolayer range was studied using scanning tunneling microscopy (STM) and density functional theory (DFT) based simulations. Experimental results revealed that both germanene phases nucleate and grow independently from each other and regardless of Al substrate temperature within significantly expanded range Ts = 27–200 ℃. Our results unambiguously showed that STM images with hexagonal contrast yield correct-resolved structure for both germanene phases, while honeycomb contrast is a result of an artificial tip-induced STM resolution. First-principles calculations suggested atomic models with strongly buckled germanene (2×2)/Al(111)(3×3) and (√3×√3)R30°/Al(111)(√7×√7)R(±19.1°) with one of eight and one of six Ge atoms protruding upward respectively, that consistently describe the experimentally observed STM images both for single and multi domain surface phases. According to the DFT based simulations both germanene (2×2) and (√3×√3)R30° superstructures have a stretched lattice strain with respect to the ideal free-standing germanene by 6.2% and 13.9%, respectively. Hence, numerous small domains separated by domain boundaries in the (√3×√3)R307Al(111)(√7×√7)R(±19.1°) germanene phase tend to reduce the surface energy and prevent the formation of extended single domains, in contrast to the (2×2)/Al(111)(3×3) phase. However, our experimental results showed that the nucleation and growth of germanene on Al(111) surface yield strong modifications of Al surface even at room temperature (RT), which may be contributed to the formation of Al-Ge alloy due to Ge surface solid-states reactivity that was ignored in recent studies. It is already evident from our present findings that the role of Al atoms in the formation of (3×3) and (√7×√7)R(±19.1°) germanene phases is worthy to be carefully studied in the future, which could be an important knowledge for large-quantity fabrication of germanene on aluminum.

Keywords: two-dimensional (2D) materials, density functional theory, scanning tunneling microscopy, aluminum, germanene

References(50)

1

Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang, D. ; Zhang, Y. ; Dubonos, S. V. ; Grigorieva, I. V. ; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang, D. ; Katsnelson, M. I. ; Grigorieva, I. V. ; Dubonos, S. V. ; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Zhang, Y. B. ; Tan, Y. W. ; Stormer, H. L. ; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

4

Vogt, P. ; De Padova, P. ; Quaresima, C. ; Avila, J. ; Frantzeskakis, E. ; Asensio, M. C. ; Resta, A. ; Ealet, B. ; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

5

Fleurence, A. ; Friedlein, R. ; Ozaki, T. ; Kawai, H. ; Wang, Y. ; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

6

Guzmán-Verri, G. G. ; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.

7

Cahangirov, S. ; Topsakal, M. ; Aktürk, E. ; Şahin, H. ; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

8

Li, L. F. ; Lu, S. Z. ; Pan, J. B. ; Qin, Z. H. ; Wang, Y. Q. ; Wang, Y. L. ; Cao, G. Y. ; Du, S. X. ; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820–4824.

9

Dávila, M. E. ; Xian, L. ; Cahangirov, S. ; Rubio, A. ; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

10

Bampoulis, P. ; Zhang, L. ; Safaei, A. ; Van Gastel, R. ; Poelsema, B. ; Zandvliet, H. J. W. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys. : Condens. Matter 2014, 26, 442001.

11

Rahman, M. S. ; Nakagawa, T. ; Mizuno, S. Germanene: Experimental study for graphene like two dimensional germanium. Evergreen 2014, 1, 25–29.

12

Zhang, L. ; Bampoulis, P. ; Rudenko, A. N. ; Yao, Q. ; Van Houselt, A. ; Poelsema, B. ; Katsnelson, M. I. ; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.

13

Dávila, M. E. ; Le Lay, G. Few layer epitaxial germanene: A novel two-dimensional Dirac material. Sci. Rep. 2016, 6, 20714.

14

Derivaz, M. ; Dentel, D. ; Stephan, R. ; Hanf, M. C; Mehdaoui, A. ; Sonnet, P. ; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.

15

Stephan, R. ; Hanf, M. C. ; Derivaz, M. ; Dentel, D. ; Asensio, M. C. ; Avila, J. ; Mehdaoui, A. ; Sonnet, P. ; Pirri, C. Germanene on Al(111): Interface electronic states and charge transfer. J. Phys. Chem. C 2016, 120, 1580–1585.

16

Stephan, R. ; Derivaz, M. ; Hanf, M. C. ; Dentel, D. ; Massara, N. ; Mehdaoui, A. ; Sonnet, P. ; Pirri, C. Tip-induced switch of germanene atomic structure. J. Phys. Chem. Lett. 2017, 8, 4587–4593.

17

Fang, J. D. ; Zhao, P. ; Chen, G. Germanene growth on Al(111): A case study of interface effect. J. Phys. Chem. C 2018, 122, 18669–18681.

18

Endo, S. ; Kubo, O. ; Nakashima, N. ; Iwaguma, S. ; Yamamoto, R. ; Kamakura, Y. ; Tabata, H. ; Katayama, M. √3×√3 germanene on Al(111) grown at nearly room temperature. Appl. Phys. Express 2018, 11, 015502.

19

Wang, W. M. ; Uhrberg, R. I. G. Coexistence of strongly buckled germanene phases on Al(111). Beilstein J. Nanotechnol. 2017, 8, 1946–1951.

20

Zhu, F. F. ; Chen, W. J. ; Xu, Y. ; Gao, C. L. ; Guan, D. D. ; Liu, C. H. ; Qian, D. ; Zhang, S. C. ; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

21

Gou, J. ; Kong, L. J. ; Li, H. ; Zhong, Q. ; Li, W. B. ; Cheng, P. ; Chen, L. ; Wu, K. H. Strain-induced band engineering in monolayer stanene on Sb(111). Phys. Rev. Mater. 2017, 1, 054004.

22

Yuhara, J. ; Fujii, Y. ; Nishino, K. ; Isobe, N. ; Nakatake, M. ; Xian, L. ; Rubio, A. ; Le Lay, G. Large area planar stanene epitaxially grown on Ag(111). 2D Mater. 2018, 5, 025002.

23

Zhang, J. L. ; Zhao, S. T. ; Han, C. ; Wang, Z. Z. ; Zhong, S. ; Sun, S. ; Guo, R. ; Zhou, X. ; Gu, C. D. ; Yuan, K. D. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908.

24

Feng, B. J. ; Zhang, J. ; Zhong, Q. ; Li, W. B. ; Li, S. ; Li, H. ; Cheng, P. ; Meng, S. ; Chen, L. ; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

25

Acun, A. ; Zhang, L. ; Bampoulis, P. ; Farmanbar, M. ; Van Houselt, A. ; Rudenko, A. N. ; Lingenfelder, M. ; Brocks, G. ; Poelsema, B. ; Katsnelson, M. I. et al. Germanene: The germanium analogue of graphene. J. Phys. : Condens. Matter 2015, 27, 443002.

26

Liu, C. C. ; Feng, W. X. ; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

27

Muzychenko, D. A. ; Oreshkin, A. I. ; Oreshkin, S. I. ; Ustavschikov, S. S. ; Putilov, A. V. ; Aladyshkin, A. Y. The surface structures growth's features caused by Ge adsorption on the Au(111) surface. JETP Lett. 2017, 106, 217–222.

28

Wang, W. ; Uhrberg, R. I. G. Investigation of the atomic and electronic structures of highly ordered two-dimensional germanium on Au(111). Phys. Rev. Mater. 2017, 1, 074002.

29

Cantero, E. D. ; Solis, L. M. ; Tong, Y. F. ; Fuhr, J. D. ; Martiarena, M. L. ; Grizzia, O. ; Sáncheza, E. A. Growth of germanium on Au(111): Formation of germanene or intermixing of Au and Ge atoms? Phys. Chem. Chem. Phys. 2017, 19, 18580–18586.

30

Yuhara, J. ; Shimazu, H. ; Ito, K. ; Ohta, A. ; Araidai, M. ; Kurosawa, M. ; Nakatake, M. ; Le Lay, G. Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111). ACS Nano 2018, 12, 11632–11637.

31

Lin, C. H. ; Huang, A. ; Pai, W. W. ; Chen, W. C. ; Chang, T. R. ; Yukawa, R. ; Cheng, C. M. ; Mou, C. Y. ; Matsuda, I. ; Chiang, T. C. et al. Single-layer dual germanene phases on Ag(111). Phys. Rev. Mater. 2018, 2, 024003.

32

Qin, Z. H. ; Pan, J. B. ; Lu, S. Z. ; Shao, Y. ; Wang, Y. L. ; Du, S. X. ; Gao, H. J. ; Cao, G. Y. Direct evidence of dirac signature in bilayer germanene islands on Cu(111). Adv. Mater. 2017, 29, 1606046.

33

Li, F. P. ; Wei, W. ; Lv, X. S. ; Huang, B. B. ; Dai, Y. Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111). Phys. Chem. Chem. Phys. 2017, 19, 22844–22851.

34

Gou, J. ; Zhong, Q. ; Sheng, S. X. ; Li, W. B. ; Cheng, P. ; Li, H. ; Chen, L. ; Wu, K. H. Strained monolayer germanene with 1×1 lattice on Sb(111). 2D Mater. 2016, 3, 045005.

35

Horcas, I. ; Fernández, R. ; Gómez-Rodríguez, J. M. ; Colchero, J. ; Gómez-Herrero, J. ; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

36

Kohn, W. ; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

37

Perdew, J. P. ; Burke, K. ; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

38

Perdew, J. P. ; Wang, Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 1986, 33, 8800–8802.

39

Soler, J. M. ; Artacho, E. ; Gale, J. D. ; García, A. ; Junquera, J. ; Ordejón, P. ; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

40

Troullier, N. ; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

41

Monkhorst, H. J. ; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

42

Tersoff, J. ; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.

43

Tersoff, J. ; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.

44

Rohlfing, M. ; Temirov, R. ; Tautz, F. S. Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Phys. Rev. B 2007, 76, 115421.

45

Muzychenko, D. A. ; Schouteden, K. ; Houssa, M. ; Savinov, S. V. ; Van Haesendonck, C. Noninvasive embedding of single Co atoms in Ge(111)2×1 surfaces. Phys. Rev. B 2012, 85, 125412.

46

Muzychenko, D. A. ; Schouteden, K. ; Van Haesendonck, C. Electronic and atomic structure of Co/Ge nanoislands on the Ge(111) surface. Phys. Rev. B 2013, 88, 195436.

47

Herz, M. ; Giessibl, F. J. ; Mannhart, J. Probing the shape of atoms in real space. Phys. Rev. B 2003, 68, 045301.

48

Chaika, A. N. ; Orlova, N. N. ; Semenov, V. N. ; Postnova, E. Y. ; Krasnikov, S. A. ; Lazarev, M. G. ; Chekmazov, S. V. ; Aristov, V. Y. ; Glebovsky, V. G. ; Bozhko, S. I. ; et al. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep 2014, 4, 3742.

49

Seidl, A. ; Görling, A. ; Vogl, P. ; Majewski, J. A. ; Levy, M. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B 1996, 53, 3764–3774.

50

Cohen, A. J. ; Mori-Sánchez, P. ; Yang, W. T. Insights into current limitations of density functional theory. Science 2008, 321, 792–794.

File
12274_2019_2542_MOESM1_ESM.pdf (6.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 July 2019
Revised: 19 September 2019
Accepted: 10 October 2019
Published: 25 October 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The research in Moscow has been supported Russian Foundation for Basic Research (RFBR) grants and by the computing facilities of the M. V. Lomonosov Moscow State University (MSU) Research Computing Center. The research in Leuven has been supported by the Research Foundation-Flanders (FWO, Belgium).

Return