Journal Home > Volume 12 , Issue 12

Stretchable strain sensors play an increasingly important role in artificial intelligent devices. However, high-performance strain sensors have been slowly developed owing to the harsh requirement of self-powered function, long cycle life and high resolution. Here, we report a self-powered stretchable graphene-ecoflex composite strain sensor based on photo-thermoelectric (PTE) effect induced electricity. The device exhibits a high strain sensitivity of -0.056 ln(nA)/% with strains ranged from 0% to 20% under 980 nm light illumination, where the strain sensitivity can be found to increase with increasing light intensity. The strain sensor maintains outstanding dynamic stability under periodic strains ranged from 0 to 100% in 100 cycles. The sensing resolution can be as high as 0.5% with both the response and recovery time of less than 0.6 s. It can precisely monitor human joint motions and stretchable strains by implanting the device in pork.

File
12274_2019_2541_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2019
Revised: 03 October 2019
Accepted: 09 October 2019
Published: 24 October 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2016YFA0202701), the National Natural Science Foundation of China (No. 51472055), External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121411KYS820150028), the 2015 Annual Beijing Talents Fund (No. 2015000021223ZK32), Qingdao National Laboratory for Marine Science and Technology (No. 2017ASKJ01), the University of Chinese Academy of Sciences (No. Y8540XX2D2), and the "thousands talents" program for the pioneer researcher and his innovation team, China.

Return