Journal Home > Volume 13 , Issue 5

The capability of preparing three-dimensional (3D) printable living inks provides a unique way to harness the activity of microbes and use them in functional devices. Here we demonstrate the incorporation of the living bacteria Shewanella Oneidensis MR-1 (S. Oneidensis MR-1) directly into an ink used for creating 3D printed structures. Significantly, S. Oneidensis MR-1 survives the 3D printing process by showing prominent activity in degrading the methyl orange azo dye. Through the addition of carbon black to this ink, we further demonstrate the direct printing of a living microbial fuel cell (MFC) anode. To our knowledge, this is the first report on implementing 3D printed bacteria structure as a living electrode for an MFC system. The capability of printing living and functional 3D bacterial structure could open up new possibilities in design and fabrication of microbial devices as well as fundamental research on the interaction between different bacterial strains, electrode materials, and surrounding environments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D printing of living bacteria electrode

Show Author's information Megan C. Freyman§Tianyi Kou§Shanwen WangYat Li( )
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

§Megan C. Freyman and Tianyi Kou contributed equally to this work.

Abstract

The capability of preparing three-dimensional (3D) printable living inks provides a unique way to harness the activity of microbes and use them in functional devices. Here we demonstrate the incorporation of the living bacteria Shewanella Oneidensis MR-1 (S. Oneidensis MR-1) directly into an ink used for creating 3D printed structures. Significantly, S. Oneidensis MR-1 survives the 3D printing process by showing prominent activity in degrading the methyl orange azo dye. Through the addition of carbon black to this ink, we further demonstrate the direct printing of a living microbial fuel cell (MFC) anode. To our knowledge, this is the first report on implementing 3D printed bacteria structure as a living electrode for an MFC system. The capability of printing living and functional 3D bacterial structure could open up new possibilities in design and fabrication of microbial devices as well as fundamental research on the interaction between different bacterial strains, electrode materials, and surrounding environments.

Keywords: three-dimensional (3D) printing, Shewanella Oneidensis MR-1, microbial fuel cells, bacteria ink, living electrode

References(23)

[1]
Eş, I.; Mousavi Khaneghah, A.; Barba, F. J.; Saraiva, J. A.; Sant’Ana, A. S.; Hashemi, S. M. B. Recent advancements in lactic acid production—A review. Food Res. Int. 2018, 107, 763-770.
[2]
Cantera, S.; Muñoz, R.; Lebrero, R.; López, J. C.; Rodríguez, Y.; García-Encina, P. A. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 2018, 50, 128-135.
[3]
Liamleam, W.; Annachhatre, A. P. Electron donors for biological sulfate reduction. Biotechnol. Adv. 2007, 25, 452-463.
[4]
Kolmert, Å.; Johnson, D. B. Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 2001, 76, 836-843.
[5]
Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R. Microbial reduction of uranium. Nature 1991, 350, 413-416.
[6]
Golitsch, F.; Bücking, C.; Gescher, J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens. Bioelectron. 2013, 47, 285-291.
[7]
Wang, G. M.; Qian, F.; Saltikov, C. W.; Jiao, Y. Q.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011, 4, 563-570.
[8]
Qian, F.; Wang, H. Y.; Ling, Y. C.; Wang, G. M.; Thelen, M. P.; Li, Y. Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Lett. 2014, 14, 3688-3693.
[9]
Wang, H. Y.; Qian, F.; Li, Y. Solar-assisted microbial fuel cells for bioelectricity and chemical fuel generation. Nano Energy 2014, 8, 264-273.
[10]
Wang, H. Y.; Qian, F.; Wang, G. M.; Jiao, Y. Q.; He, Z.; Li, Y. Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano 2013, 7, 8728-8735.
[11]
Qian, F.; Wang, G. M.; Li, Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett. 2010, 10, 4686-4691.
[12]
Lovley, D. R. Electromicrobiology. Annu. Rev. Microbiol. 2012, 66, 391-409.
[13]
Wang, H. Y.; Wang, G. M.; Ling, Y. C.; Qian, F.; Song, Y.; Lu, X. H.; Chen, S. W.; Tong, Y. X.; Li, Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013, 5, 10283-10290.
[14]
Lehner, B. A. E.; Schmieden, D. T.; Meyer, A. S. A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 2017, 6, 1124-1130.
[15]
Qian, F.; Zhu, C.; Knipe, J. M.; Ruelas, S.; Stolaroff, J. K.; DeOtte, J. R.; Duoss, E. B.; Spadaccini, C. M.; Henard, C. A.; Guarnieri, M. T. et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 2019, 19, 5829-5835.
[16]
Kuo, C. K.; Ma, P. X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511-521.
[17]
LIVE/DEAD® BacLightTM Bacterial Viability Kits. 2004.
DOI
[18]
Cai, P. J.; Xiao, X.; He, Y. R.; Li, W. W.; Chu, J.; Wu, C.; He, M. X.; Zhang, Z.; Sheng, G. P.; Lam, M. H. W. et al. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl. Microbiol. Biotechnol. 2012, 93, 1769-1776.
[19]
Xiao, L.; Damien, J.; Luo, J. Y.; Jang, H. D.; Huang, J. X.; He, Z. Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 2012, 208, 187-192.
[20]
Hou, H. J.; Li, L.; Ceylan, C. Ü.; Haynes, A.; Cope, J.; Wilkinson, H. H.; Erbay, C.; de Figueiredo, P.; Han, A. A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens. Lab Chip 2012, 12, 4151-4159.
[21]
Yang, Y.; Liu, T. Y.; Zhu, X.; Zhang, F.; Ye, D. D.; Liao, Q.; Li, Y. Boosting power density of microbial fuel cells with 3D nitrogen-doped graphene aerogel electrode. Adv. Sci. 2016, 3, 1600097.
[22]
Jiang, X. C.; Hu, J. S.; Fitzgerald, L. A.; Biffinger, J. C.; Xie, P.; Ringeisen, B. R.; Lieber, C. M. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 16806-16810.
[23]
Baron, D.; LaBelle, E.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 2009, 284, 28865-28873.
File
12274_2019_2534_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2019
Revised: 03 October 2019
Accepted: 04 October 2019
Published: 23 October 2019
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

M. F. and T. K. contributed equally to this work. We acknowledge Dr. Tom Yuzvinsky from the W. M. Keck Center for Nanoscale Optofluidics, University of California, Santa Cruz (UCSC) for SEM image acquisition. The authors also thank Prof. Jin Zhang at UCSC for allowing the use of their UV-vis spectrometer, and Dr. Ben Abrams at Institute for the Biology of Stem Cells at UCSC for taking confocal microscopy images.

Return