Journal Home > Volume 12 , Issue 11

The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. A growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Real time imaging of two-dimensional iron oxide spherulite nanostructure formation

Show Author's information Wenjing Zheng1,2Matthew R. Hauwiller2,3Wen-I Liang2,4Colin Ophus5Peter Ercius5Emory M. Chan5Ying-Hao Chu4Mark Asta2,6Xiwen Du1( )A. Paul Alivisatos2,3,7Haimei Zheng2,6( )
Institute of New-Energy MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300350China
Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
Department of ChemistryUniversity of CaliforniaBerkeleyBerkeleyCA94720USA
Department of Materials Science and Engineering"National Chiao Tung University"Hsinchu30010Taiwan, China
The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyBerkeleyCA94720USA
Kavli Energy NanoScience InstituteUniversity of California-Berkeley and Lawrence Berkeley National LaboratoryBerkeleyCA94720USA

Abstract

The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. A growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.

Keywords: liquid cell transmission electron microscopy (TEM), iron oxide, in situ TEM, spherulite nanostructures

References(52)

1

Geveling, N. N.; Maslenkov, S. B. Solidification of eutectic Ni-Ni3Ti alloys. Met. Sci. Heat Treat. 1976, 18, 755–760.

2

Crist, B.; Schultz, J. M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016, 56, 1–63.

3

Kolosov, V. Y.; Shvamm, K. L.; Gainutdinov, R. V.; Tolstikhina, A. L. Combined TEM-AFM study of "transrotational" spherulites growing in thin amorphous films. Bull. Russ. Acad. Sci. : Phys. 2007, 71, 1442–1446.

4

Sasaki, N.; Murakami, Y.; Shindo, D.; Sugimoto, T. Computer simulations for the growth process of peanut-type hematite particles. J. Colloid Interface Sci. 1999, 213, 121–125.

5

Fowler, A. D.; Berger, B.; Shore, M.; Jones, M. I.; Ropchan, J. Supercooled rocks: Development and significance of varioles, spherulites, dendrites and spinifex in Archaean volcanic rocks, Abitibi Greenstone belt, Canada. Precambrian Res. 2002, 115, 311–328.

6

Davis, B. K.; McPhie, J. Spherulites, quench fractures and relict perlite in a late Devonian rhyolite dyke, Queensland, Australia. J. Volcanol. Geotherm. Res. 1996, 71, 1–11.

7

Hutter, J. L.; Bechhoefer, J. Three classes of morphology transitions in the solidification of a liquid crystal. Phys. Rev. Lett. 1997, 79, 4022–4025.

8

Hutter, J. L.; Bechhoefer, J. Morphology transitions in diffusion-and kinetics-limited solidification of a liquid crystal. Phys. Rev. E 1999, 59, 4342–4352.

9

Hutter, J. L.; Bechhoefer, J. Banded spherulitic growth in a liquid crystal. J. Cryst. Growth 2000, 217, 332–343.

10

Kim, Y. Y.; Ribeiro, L.; Maillot, F.; Ward, O.; Eichhorn, S. J.; Meldrum, F. C. Bio-inspired synthesis and mechanical properties of calcite-polymer particle composites. Adv. Mater. 2010, 22, 2082–2086.

11

Toda, A.; Okamura, M.; Taguchi, K.; Hikosaka, M.; Kajioka, H. Branching and higher order structure in banded polyethylene spherulites. Macromolecules 2008, 41, 2484–2493.

12

Maxfield, J.; Mandelkern, L. Crystallinity, supermolecular structure, and thermodynamic properties of linear polyethylene fractions. Macromolecules 1977, 10, 1141–1153.

13

Voigt-Martin, I. G.; Mandelkern, L. A quantitative electron microscopic study of the crystallite structure of molecular weight fractions of linear polyethylene. J. Polym. Sci. Ploym. Phys. Ed. 1984, 22, 1901–1917.

14

Magill, J. H. Review spherulites: A personal perspective. J. Mater. Sci. 2001, 36, 3143–3164.

15

Keith, H. D.; Padden, F. J. Jr. Spherulitic crystallization from the melt. Ⅱ. Influence of fractionation and impurity segregation on the kinetics of crystallization. J. Appl. Phys. 1964, 35, 1286–1296.

16

Asta, M.; Hoyt, J. J.; Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 2002, 66, 100101(R).

17

Karma, A.; Rappel, W. J. Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 1996, 77, 4050–4053.

18

Karma, A.; Rappel, W. J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 1998, 57, 4323–4349.

19

Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 1980, 52, 1–28.

20

Morris, J. R. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 2002, 66, 144104.

21

Mullins, W. W.; Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 1964, 35, 444–451.

22

Mullins, W. W.; Sekerka, R. F. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 1963, 34, 323–329.

23

Plapp, M.; Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett. 2000, 84, 1740–1743.

24

Plapp, M.; Karma, A. Multiscale finite-difference-diffusion-monte-carlo method for simulating dendritic solidification. J. Comput. Phys. 2000, 165, 592–619.

25

Provatas, N.; Goldenfeld, N.; Dantzig, J. Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 1998, 80, 3308–3311.

26

Sun, D. Y.; Asta, M.; Hoyt, J. J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B 2004, 69, 024108.

27

Sun, D. Y.; Mendelev, M. I.; Becker, C. A.; Kudin, K.; Haxhimali, T.; Asta, M.; Hoyt, J. J.; Karma, A.; Srolovitz, D. J. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B 2006, 73, 024116.

28

Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. B: Biol. Sci. 1952, 237, 37–72.

29

Sperling, L. H. Introduction to physical polymer science, 4th ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2006.

30

Magill, J. H.; Plazek, D. J. Physical properties of aromatic hydrocarbons. Ⅱ. Solidification behavior of 1, 3, 5-tri-α-naphthylbenzene. J. Chem. Phys. 1967, 46, 3757–3769.

31

Muthukumar, M. Commentary on theories of polymer crystallization. Eur. Phys. J. E 2000, 3, 199–202.

32

Gránásy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605.

33

Aaronson, H. I.; Spanos, G.; Masamura, R. A.; Vardiman, R. G.; Moon, D. W.; Menon, E. S. K.; Hall, M. G. Sympathetic nucleation: An overview. Mater. Sci. Eng. B 1995, 32, 107–123.

34

Ferrone, F. A.; Hofrichter, J.; Sunshine, H. R.; Eaton, W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J. 1980, 32, 361–380.

35

Ferrone, F. A.; Hofrichter, J.; Eaton, W. A. Kinetics of sickle hemoglobin polymerization: Ⅱ. A double nucleation mechanism. J. Mol. Biol. 1985, 183, 611–631.

36

Samuel, R. E.; Salmon, E. D.; Briehl, R. W. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature 1990, 345, 833–835.

37

Galkin, O.; Vekilov, P. G. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J. Mol. Biol. 2004, 336, 43–59.

38

Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.

39

Kim, B. J.; Tersoff, J.; Kodambaka, S.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 2008, 322, 1070–1073.

40

Harutyunyan, A. R.; Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Kuznetsov, O. A.; Hewaparakrama, K.; Kim, S. M.; Zakharov, D.; Stach, E. A.; Sumanasekera, G. U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 2009, 326, 116–120.

41

Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.

42

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

43

Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

44

Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.

45

Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, eaaw5623.

46

Hauwiller, M. R.; Zhang, X. W.; Liang, W. I.; Chiu, C. H.; Zhang, Q.; Zheng, W. J.; Ophus, C.; Chan, E. M.; Czarnik, C.; Pan, M. et al. Dynamics of nanoscale dendrite formation in solution growth revealed through in situ liquid cell electron microscopy. Nano Lett. 2018, 18, 6427–6433.

47

Yang, J.; Zeng, Z. Y.; Kang, J.; Betzler, S.; Czarnik, C.; Zhang, X. W.; Ophus, C.; Yu, C.; Bustillo, K.; Pan, M.; et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 2019, 18, 970–976.

48

Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314.

49

Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Transformation of ferric hydroxide into spinel by iron(Ⅱ) adsorption. Langmuir 1992, 8, 313–319.

50

Benner, S. G.; Hansel, C. M.; Wielinga, B. W.; Barber, T. M.; Fendorf, S. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 2002, 36, 1705–1711.

51

Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.; Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 2003, 67, 2977–2992.

52

Müller, C.; Aghamohammadi, M.; Himmelberger, S.; Sonar, P.; Garriga, M.; Salleo, A.; Campoy-Quiles, M. One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater. 2013, 23, 2368–2377.

Video
12274_2019_2531_MOESM2_ESM.avi
12274_2019_2531_MOESM3_ESM.avi
12274_2019_2531_MOESM4_ESM.avi
12274_2019_2531_MOESM5_ESM.avi
12274_2019_2531_MOESM6_ESM.avi
File
12274_2019_2531_MOESM1_ESM.pdf (4.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2019
Revised: 16 September 2019
Accepted: 27 September 2019
Published: 19 October 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This project was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the in-situ TEM (KC22ZH) program. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Gatan Inc. for the advanced K2 IS camera and Dr. Ming Pan and Dr. Cory Czarnik for their help with part of experimental set up in this work. W. J. Z. acknowledges the support from Tianjin University Graduate School International Academic Exchange Fund. M. R. H. was funded by KAUST project under H. M. Z. at UC Berkeley.

Return