Journal Home > Volume 12 , Issue 11

Rational synthesis of a hierarchical porous architecture with highly active and consecutive conductive network is very critical to achieve the high-performance of nanomaterials in electrochemical energy conversion and storage. We propose here a hierarchical micro-/nanostructured hybrids constructed by the dual carbon shell nanowire host containing CoP nanocrystals of several nanometers, which generates Co-based metal-organic framework on graphene oxide nanosheets in situ and followed a direct phosphorization (CoP@NC/rGO). The dual carbon shell, consisting of Co-based metal-organic framework derived porous doped carbon (NC) and reduced graphene oxide (rGO), can not only impedes CoP nanocrystals from coalescing, and renders highly exposed the electrochemically accessible active sites, but also provides the multidimensional pathways for rapid electron and ion transportation. More importantly, the covered dual carbon shell on CoP nanocrystals plays a role as a protective layer to impede the nanocrystals' corrosion. By virtue of compositional and structural advantages, the micro-/nanostructured CoP@NC/rGO hybrids manifest outstanding energy storage properties when evaluated as anodes for lithium/sodium ion batteries. Remarkably, it also reveals highly efficient electrocatalytic performance for hydrogen evolution reaction in acid media with low Tafel slope, overpotential and robust durability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction

Show Author's information Xiaojun ZhaoDan LuoYan WangZhi-Hong Liu( )
Key Laboratory for Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710062China

Abstract

Rational synthesis of a hierarchical porous architecture with highly active and consecutive conductive network is very critical to achieve the high-performance of nanomaterials in electrochemical energy conversion and storage. We propose here a hierarchical micro-/nanostructured hybrids constructed by the dual carbon shell nanowire host containing CoP nanocrystals of several nanometers, which generates Co-based metal-organic framework on graphene oxide nanosheets in situ and followed a direct phosphorization (CoP@NC/rGO). The dual carbon shell, consisting of Co-based metal-organic framework derived porous doped carbon (NC) and reduced graphene oxide (rGO), can not only impedes CoP nanocrystals from coalescing, and renders highly exposed the electrochemically accessible active sites, but also provides the multidimensional pathways for rapid electron and ion transportation. More importantly, the covered dual carbon shell on CoP nanocrystals plays a role as a protective layer to impede the nanocrystals' corrosion. By virtue of compositional and structural advantages, the micro-/nanostructured CoP@NC/rGO hybrids manifest outstanding energy storage properties when evaluated as anodes for lithium/sodium ion batteries. Remarkably, it also reveals highly efficient electrocatalytic performance for hydrogen evolution reaction in acid media with low Tafel slope, overpotential and robust durability.

Keywords: hydrogen evolution reaction, metal-organic framework, lithium/sodium ion batteries, micro-/nanostructured, CoP@NC/rGO

References(60)

1

Yun, Q. B.; Lu, Q. P.; Zhang, X.; Tan, C. L.; Zhang, H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem., Int. Ed. 2018, 57, 626–646.

2

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

3

Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

4

Chen, L.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Guo, S. J.; Hu, Y. J.; Li, C. Z. Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 2017, 7, 1602782.

5

Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B. Environ. 2019, 256, 117893.

6

Zhao, X. J.; Wang, G.; Liu, X. J.; Zheng, X. L.; Wang, H. Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res. 2018, 11, 3603–3618.

7

Li, J. J.; Shi, L.; Gao, J. Y.; Zhang, G. Q. General one-pot synthesis of transition-metal phosphide/nitrogen-doped carbon hybrid nanosheets as ultrastable anodes for sodium-ion batteries. Chem. -Eur. J. 2018, 24, 1253–1258.

8

Hua, Y. P.; Xu, Q. C.; Hu, Y. J.; Jiang, H.; Li, C. Z. Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting. J. Energy Chem. 2019, 37, 1–6.

9

Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551.

10

Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156.

11

Xu, H.; Wei, J. J.; Zhang, K.; Shiraishi, Y.; Du, Y. K. Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 29647–29655.

12

Zhang, Y. J.; Wang, G. Y.; Wang, L.; Tang, L.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. H. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries. Nano Lett. 2019, 19, 2575–2582.

13

Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

14

Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80.

15

Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

16

Gao, X.; Wang, B. Y.; Zhang, Y.; Liu, H.; Liu, H. K.; Wu, H.; Dou, S. X. Graphene-scroll-sheathe. α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 2019, 16, 46–55.

17

Liu, X. B.; Li, W. X.; Zhao, X. D.; Liu, Y. C.; Nan, C. W.; Fan, L. Z. Two birds with one stone: Metal-organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 2019, 29, 1901510.

18

Yoon, T.; Bok, T.; Kim, C.; Na, Y.; Park, S.; Kim, K. S. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode. ACS Nano 2017, 11, 4808–4815.

19

Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

20

Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 2017, 11, 3705–3715.

21

Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.

22

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

23

Liang, D.; Jiang, H.; Xu, Q. C.; Luo, J. Q.; Hu, Y. J.; Li, C. Z. Modulating the Volmer step by MOF derivatives assembled with heterogeneous Ni2P-CoP nanocrystals in alkaline hydrogen evolution reaction. J. Electrochem. Soc. 2018, 165, F1286–F1291.

24

Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124.

25

Dai, R. L.; Sun, W. W.; Lv, L. P.; Wu, M. H.; Liu, H.; Wang, G. X.; Wang, Y. Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 2017, 13, 1700521.

26

Ma, J. W.; Wang, M.; Lei, G. Y.; Zhang, G. L.; Zhang, F. B.; Peng, W. C.; Fan, X. B.; Li, Y. Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small 2018, 14, 1702895.

27

Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2018, 8, 1701416.

28

Ye, L.; Wen, Z. H. Self-supported three-dimensional Cu/Cu2O-CuO/rGO nanowire array electrodes for an efficient hydrogen evolution reaction. Chem. Commun. 2018, 54, 6388–6391.

29

Song, F. Z.; Zhu, Q. L.; Yang, X.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2018, 8, 1701416.

30

Kim, S. H.; Babu, R.; Kim, D. W.; Lee, W.; Park, D. W. Cycloaddition of CO2 and propylene oxide by using M(HBTC)(4, 4′-bipy)-3DMF (M = Ni, Co, Zn) metal-organic frameworks. Chin. J. Catal. 2018, 39, 1311–1319.

31

Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y. Design and construction of a microporous metal-organic framework based on the pillared-layer motif. CrystEngComm 2007, 9, 545–547.

32

Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

33

Chen, Z. L.; Wu, R. B.; Liu, M.; Wang, H.; Xu, H. B.; Guo, Y. H.; Song, Y.; Fang, F.; Yu, X. B.; Sun, D. L. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702046.

34

Ji, D. H.; Wan, Y. Z.; Yang, Z. W.; Li, C. Z.; Xiong, G. Y.; Li, L. L.; Han, M.; Guo, R. S.; Luo, H. L. Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: A novel nanocomposite for lithium-ion batteries. Electrochim. Acta 2016, 192, 22–29.

35

Singh, S. K.; Kashyap, V.; Manna, N.; Bhange, S. N.; Soni, R.; Boukherroub, R.; Szunerits, S.; Kurungot, S. Efficient and durable oxygen reduction electrocatalyst based on CoMn alloy oxide nanoparticles supported over n-doped porous graphene. ACS Catal. 2017, 7, 6700–6710.

36

Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

37

Yu, C.; Liu, Z. Q.; Meng, X. T.; Lu, B.; Cui, D.; Qiu, J. S. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale 2016, 8, 17458–17464.

38

Zhu, K. J.; Liu, J.; Li, S. T.; Liu, L. L.; Yang, L. Y.; Liu, S. L.; Wang, H.; Xie, T. Ultrafine cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for lithium ion batteries. Adv. Mater. Interfaces 2017, 4, 1700377.

39

Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1093–1099.

40

López, M. C.; Ortiz, G. F.; Tirado, J. L. A functionalized Co2P negative electrode for batteries demanding high Li-potential reaction. J. Electrochem. Soc. 2012, 159, A1253–A1261.

41

Zhang, Z. S.; Yang, J.; Nuli, Y. N.; Wang, B. F.; Xu, J. Q. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics 2005, 176, 693–697.

42

Zhao, X. J.; Jia, Y. H.; Liu, Z. H. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J. Colloid Interface Sci. 2019, 536, 463–473.

43

Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 2018, 30, 1802310.

44

Liu, Z. L.; Yang, S. J.; Sun, B. X.; Chang, X. H.; Zheng, J.; Li, X. G. A peapodlike CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 10187–10191.

45

Xu, X. J.; Liu, J.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Self-supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long-life lithium-ion batteries. Chem. -Eur. J. 2017, 23, 5198–5204.

46

Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E.; Yan, Q. Y. From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. J. Mater. Chem. A 2016, 4, 10893–10899.

47

Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G.; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 2018, 11, 2733–2745.

48

Lin, J.; Xu, J. J.; Zhao, W.; Dong, W. J.; Li, R. Z.; Zhang, Z. C.; Huang, F. Q. In situ synthesis of MoC1-x nanodot@Carbon hybrids for capacitive lithium-ion storage. ACS Appl. Mater. Interfaces 2019, 11, 19977–19985.

49

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

50

Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 2013, 7, 7083–7092.

51

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

52

Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627–632.

53

Li, Z. Q.; Yin, L. W. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 2015, 3, 21569–21577.

54

Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 2019, 12, 607–618.

55

Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. Design of active and stable Co-Mo-S, chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

56

Grosvenor, A. P.; Wik, S. D.; Cavell, R. G.; Mar, A. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy. Inorg. Chem. 2005, 44, 8988–8998.

57

Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

58

Wu, C.; Yang, Y. J.; Dong, D.; Zhang, Y. H.; Li, J. H. In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small 2017, 13, 1602873.

59

Zhang, H. X.; Zhang, J. H.; Li, Y. H.; Jiang, H. B.; Jiang, H.; Li, C. Z. Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 13506–13510.

60

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

File
12274_2019_2529_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2019
Revised: 28 August 2019
Accepted: 27 September 2019
Published: 17 October 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21573142 and 21903051), the China Postdoctoral Science Foundation (No. 2018M643569), the Natural Science Foundation of Shaanxi Province (No. 2019JQ-671), and the Fundamental Research Funds for the Central Universities (No. GK201903042).

Return