Journal Home > Volume 12 , Issue 12

Hollow spheres of Co0.85Se constructed by two-dimensional (2D) mesoporous ultrathin nanosheets were synthesized via simple and cost effective approach. Their bifunctional electrocatalytic-supercapacitive properties were obtained simultaneously due to synergistic effects between macroscopic morphological features and microscopic atomic/electronic structure of Co0.85Se. The as-synthesized hollow spheres of Co0.85Se that are constructed by 2D mesoporous ultrathin nanosheets exhibit inspiring electrochemical performance for supercapacitor, presenting maximum energy density at high power density (54.66 Wh·kg-1 at 1.6 kW·kg-1) and long cycle stability (88% retention after 8, 000 cycles). At the same time, the hollow spheres of Co0.85Se constructed by 2D mesoporous ultrathin nanosheets display excellent catalytic performance for oxygen evolution reaction (OER) due to special structure, high surface area and mesoporous nature of sheets, which achieve low overpotential (290 mV at 10 mA·g-1) and low Tafel slope (81 mV·dec-1) for long-term operation (only 7.8% decay in current density after 9 h). It could be envisioned that the proposed simple approach will pave a new way to synthesize other metal chalcogenides for energy conversion and storage technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting

Show Author's information Nadeem Hussain1,2Fangfang Wu3Liqiang Xu1,4( )Yitai Qian1
Key Laboratory of Colloid & Interface ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
Shenzhen Research Institute of Shandong UniversityRm A301Virtual University ParkNanshanShenzhen518057China
College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhou310014China

Abstract

Hollow spheres of Co0.85Se constructed by two-dimensional (2D) mesoporous ultrathin nanosheets were synthesized via simple and cost effective approach. Their bifunctional electrocatalytic-supercapacitive properties were obtained simultaneously due to synergistic effects between macroscopic morphological features and microscopic atomic/electronic structure of Co0.85Se. The as-synthesized hollow spheres of Co0.85Se that are constructed by 2D mesoporous ultrathin nanosheets exhibit inspiring electrochemical performance for supercapacitor, presenting maximum energy density at high power density (54.66 Wh·kg-1 at 1.6 kW·kg-1) and long cycle stability (88% retention after 8, 000 cycles). At the same time, the hollow spheres of Co0.85Se constructed by 2D mesoporous ultrathin nanosheets display excellent catalytic performance for oxygen evolution reaction (OER) due to special structure, high surface area and mesoporous nature of sheets, which achieve low overpotential (290 mV at 10 mA·g-1) and low Tafel slope (81 mV·dec-1) for long-term operation (only 7.8% decay in current density after 9 h). It could be envisioned that the proposed simple approach will pave a new way to synthesize other metal chalcogenides for energy conversion and storage technology.

Keywords: energy density, supercapacitor, oxygen evolution reaction, hollow sphere, mesoporous

References(38)

1

Wu, J. L.; Ouyang, C. B.; Dou, S.; Wang, S. Y. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors. Nanotechnology, 2015, 26, 325401.

2

Xu, H.; Zhang, C.; Zhou, W.; Li, G. R. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. Nanoscale, 2015, 7, 16932–16942.

3

Liu, J. L.; Zhang, L. L.; Wu, H. B.; Lin, J. Y.; Shen, Z. X.; Lou, X. W. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci., 2014, 7, 3709–3719.

4

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341, 534–537.

5

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev., 2014, 114, 11828–11862.

6

Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater, 2017, 29, 1604167.

7

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals. Rodgers, P., Ed.; World Scientific: Singapore, 2010; pp 320–329.

8

Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, 22, 2632–2641.

9

Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 2010, 4, 5835–5842.

10

Jabeen, N.; Hussain, A.; Xia, Q. Y.; Sun, S.; Zhu, J. W.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804.

11

Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci., 2013, 6, 3553–3558.

12

Chen, Y. N.; Xu, S. M.; Li, Y. C.; Jacob, R. J.; Kuang, Y. D.; Liu, B. Y.; Wang, Y. L.; Pastel, G.; Salamanca-Riba, L. G.; Zachariah, M. R. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv. Energy Mater., 2017, 7, 1700482.

13

Xu, S. M.; Chen, Y. N.; Li, Y. J.; Lu, A. J.; Yao, Y. G.; Dai, J. Q.; Wang, Y. B.; Liu, B. Y.; Lacey, S. D.; Pastel, G. R. et al. Universal, in-situ transformation of bulky compounds into nanoscale catalysts by high-temperature pulse. Nano Lett., 2017, 17, 5817–5822.

14

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater., 2012, 11, 550–557.

15

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc., 2014, 136, 7077–7084.

16

Wang, Y. Y.; Liu, D. D.; Liu, Z. J.; Xie, C.; Huo, J.; Wang, S. Y. Porous cobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun., 2016, 52, 12614–12617.

17

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol., 2015, 10, 444–452.

18

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater., 2018, 8, 1701694.

19

Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater., 2019, 31, 1806682.

20

Yilmaz, G.; Tan, C. F.; Lim, Y. F.; Ho, G. W. Pseudomorphic transformation of interpenetrated prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting. Adv. Energy Mater., 2019, 9, 1802983.

21

Wang, S.; He, P.; Jia, L. P.; He, M. Q.; Zhang, T. H.; Dong, F. Q.; Liu, M. Z.; Liu, H. H.; Zhang, Y.; Li, C. X. et al. Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: A highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ., 2019, 243, 463–469.

22

Zhang, Y. X.; Zhang, C.; Guo, Y. M.; Liu, D. L.; Yu, Y. F.; Zhang, B. Selenium vacancy-rich CoSe2 ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. J. Mater. Chem. A, 2019, 7, 2536–2540.

23

Meng, T.; Qin, J. W.; Wang, S. G.; Zhao, D.; Mao, B. G; Cao, M. H. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal-organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries. J. Mater. Chem. A, 2017, 5, 7001–7014.

24

Yu, B.; Qi, F.; Chen, Y. F.; Wang, X. Q.; Zheng, B. J.; Zhang, W. L.; Li, Y. R.; Zhang, L. C. Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 30703–30710.

25

Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Guo, Y. X.; Guan, C.; Liu, J. P.; Fang, G. J. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small, 2018, 14, 1700979.

26

Gong, C.; Huang, M. L.; Zhou, P.; Sun, Z. X.; Fan, L. Q.; Lin, J. M.; Wu, J. H. Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl. Surf. Sci. 2016, 362, 469–476.

27

Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res., 2018, 11, 4302–4312.

28

Liu, T.; Zhang, L. Y.; You, W.; Yu, J. G. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small, 2018, 14, 1702407.

29

Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun., 2015, 6, 6694.

30

Hussain, N.; Wu, F. F.; Younas, W.; Xu, L. Q. Hollow sphere formation by the self aggregation of perovskite fluoride NaNiF3 nanocrystals and the application of these spheres as an electrode in an ultrahigh performance asymmetric supercapacitor. New J. Chem., 2019, 43, 11959–11967.

31

Zhou, J. S.; Wang, Y.; Zhang, J.; Chen, T. P.; Song, H. H.; Yang, H. Y. Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale 2016, 8, 14992–15000.

32

Hussain, N.; Yang, W. J.; Dou, J. M.; Chen, Y. N.; Qian, Y. T.; Xu, L. Q. Ultrathin mesoporous F-doped α-Ni(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors. J. Mater. Chem. A, 2019, 7, 9656–9664.

33

Zhang, C. M.; Xie, L. J.; Song, W.; Wang, J. L.; Sun, G. H.; Li, K. X. Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials. J. Electroanal. Chem., 2013, 706, 1–6.

34

Tang, C. H.; Yin, X. S.; Gong, H. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Appl. Mater. Interfaces, 2013, 5, 10574–10582.

35

Rakhi, R. B.; Alhebshi, N. A.; Anjum, D. H.; Alshareef, H. N. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J. Mater. Chem. A, 2014, 2, 16190–16198.

36

Wang, R. T.; Yan, X. B.; Lang, J. W.; Zheng, Z. M.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A, 2014, 2, 12724–12732.

37

Yang, J.; Yuan, Y. L.; Wang, W. C.; Tang, H. C.; Ye, Z. Z.; Lu, J. G. Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J. Power Sources 2017, 340, 6–13.

38

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep., 2015, 5, 13801.

File
12274_2019_2528_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2019
Revised: 11 September 2019
Accepted: 27 September 2019
Published: 26 October 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This research is financially supported by the Academy of Sciences large apparatus United Fund (No. U1832187), the National Natural Science Foundation of China (No. 21471091), the 111 project (No. B12015), Shenzhen Science and Technology Research and Development Funds (No. JCYJ20170818104441521), the Natural Science Foundation of Shandong Province (Nos. R2019MEM030 and 2017CXGC0503), the Fundamental Research Funds of Shandong University (No. 2018JC022) and the Taishan Scholar Project of Shandong Province (No. ts201511004).

Return