Journal Home > Volume 12 , Issue 12

Accumulation of lipid-laden macrophages (foam cells) is characteristic of atherosclerosis development in the arterial walls. Ferritin nanocages have been found to passively accumulate in the atherosclerotic plaque. Ferritin has been actively investigated as a carrier for contrast agents in atherosclerosis diagnosis. We demonstrate the potential of ferritin as a carrier for therapeutic molecules to mediate cholesterol reduction from foam cells. Cyclodextrin molecules are chemically conjugated to the ferritin nanocages surface or encapsulated within the nanocages using metal co-loading methods. The cyclodextrin-conjugated ferritin has nanomolar affinity to cholesterol molecules. Treatment of foam cells with the conjugates shows decreased levels of intracellular accumulated cholesterol. The preferential localization of ferritin to foam cells is due to transferrin receptor-mediated endocytosis process. These findings show that ferritin nanocages as carriers localize cyclodextrin molecules to foam cells which mediate intracellular cholesterol reduction, thus highlighting its potential use as a therapeutic agent.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cyclodextrin conjugated ferritin nanocages reduce intracellular cholesterol level in foam cells

Show Author's information Samyukta Ravishankar1Sierin Lim1,2( )
School of Chemical and Biomedical EngineeringNanyang Technological University70 Nanyang DriveBlk N1.3Singapore637457Singapore
NTU-Northwestern Institute for NanomedicineNanyang Technological University50 Nanyang DriveBlk N3.1Singapore637553Singapore

Abstract

Accumulation of lipid-laden macrophages (foam cells) is characteristic of atherosclerosis development in the arterial walls. Ferritin nanocages have been found to passively accumulate in the atherosclerotic plaque. Ferritin has been actively investigated as a carrier for contrast agents in atherosclerosis diagnosis. We demonstrate the potential of ferritin as a carrier for therapeutic molecules to mediate cholesterol reduction from foam cells. Cyclodextrin molecules are chemically conjugated to the ferritin nanocages surface or encapsulated within the nanocages using metal co-loading methods. The cyclodextrin-conjugated ferritin has nanomolar affinity to cholesterol molecules. Treatment of foam cells with the conjugates shows decreased levels of intracellular accumulated cholesterol. The preferential localization of ferritin to foam cells is due to transferrin receptor-mediated endocytosis process. These findings show that ferritin nanocages as carriers localize cyclodextrin molecules to foam cells which mediate intracellular cholesterol reduction, thus highlighting its potential use as a therapeutic agent.

Keywords: cyclodextrin, ferritin, protein nanocages, cholesterol sequestration, foam cells

References(37)

1

Barquera, S.; Pedroza-Tobias, A.; Medina, C.; Hernández-Barrera, C.; Bibbins-Domingo, K.; Lozano, R.; Moran, A. E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med. Res. 2015, 46, 328–338.

2

Bittencourt, M. S.; Cerci, R. J. Statin effects on atherosclerotic plaques: Regression or healing? BMC Med. 2015, 13, 260.

3

Pankajakshan, D.; Agrawal, D. K. Clinical and translational challenges in gene therapy of cardiovascular diseases. In Gene Therapy-Tools and Potential Applications, USA, 2013, pp 651–683.

4

Angelovich, T. A.; Hearps, A. C.; Jaworowski, A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol. Cell Biol. 2015, 93, 683–693.

5

Llodrá, J.; Angeli, V.; Liu, J. H.; Trogan, E.; Fisher, E. A.; Randolph, G. J. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl. Acad. Sci. USA 2004, 101, 11779–11784.

6

Bäck, M.; Hansson, G. K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211.

7

Blanco, H.; Shen, M. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

8

Sanchez-Gaytan, B. L.; Fay, F.; Lobatto, M. E.; Tang, J.; Ouimet, M.; Kim, Y.; van der Staay, S. E.; van Rijs, S. M.; Priem, B.; Zhang, L. et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjugate Chem. 2015, 26, 443–451.

9

Marrache, S.; Dhar, S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 2013, 110, 9445–9450.

10

Niyonzima, N.; Samstad, E. O.; Aune, M. H.; Ryan, L.; Bakke, S. S.; Rokstad, A. M.; Wright, S. D.; Damås, J. K.; Mollnes, T. E.; Latz, E. et al. Reconstituted high-density lipoprotein attenuates cholesterol crystal-induced inflammatory responses by reducing complement activation. J. Immunol. 2015, 195, 257–264.

11

Gu, X.; Zhang, W. L.; Liu, J. P.; Shaw, J. P.; Shen, Y. J.; Xu, Y. M.; Lu, H.; Wu, Z. M. Preparation and characterization of a lovastatin-loaded proteinfree nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech 2011, 12, 1200–1208.

12

Spicer, C. D.; Jumeaux, C.; Gupta, B.; Stevens, M. M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev. 2018, 47, 3574–3620.

13

Kitagawa, T.; Kosuge, H.; Uchida, M.; Dua, M. M.; Iida, Y.; Dalman, R. L.; Douglas, T.; McConnell, M. V. RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol. Imaging Biol. 2012, 14, 315–324.

14

Lobatto, M. E.; Calcagno, C.; Millon, A.; Senders, M. L.; Fay, F.; Robson, P. M.; Ramachandran, S.; Binderup, T.; Paridaans, M. P. M.; Sensarn, S. et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9, 1837–1847.

15

Terashima, M.; Uchida, M.; Kosuge, H.; Tsao, P. S.; Young, M. J.; Conolly, S. M.; Douglas, T.; McConnell, M. V. Human ferritin cages for imaging vascular macrophages. Biomaterials 2011, 32, 1430–1437.

16

Nandwana, V.; Ryoo, S. R.; Kanthala, S.; Kumar, A.; Sharma, A.; Castro, F. C.; Li, Y.; Hoffman, B.; Lim, S.; Dravid, V. P. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv. 2017, 7, 34892–34900.

17

Sana, B.; Johnson, E.; Sheah, K; Poh, C. L.; Lim, S. Iron-based ferritin nanocore as a contrast agent. Biointerphases 2010, 5, FA48.

18

Sana, B.; Poh, C. L.; Lim, S. A manganese-ferritin nanocomposite as an ultrasensitive T2 contrast agent. Chem. Commun. 2012, 48, 862–864.

19

Sana, B.; Johnson, E.; Le Magueres, P.; Criswell, A.; Cascio, D.; Lim, S. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties. J. Biol. Chem. 2013, 288, 32663–32672.

20

Bhaskar, S.; Lim, S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials 2017, 9, e371.

21

Liu, S. M.; Cogny, A.; Kockx, M.; Dean, R. T.; Gaus, K.; Jessup, W.; Kritharides, L. Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J. Lipid Res. 2003, 44, 1156–1166.

22

Atger, V. M.; de la Llera Moya, M.; Stoudt, G. W.; Rodrigueza, W. V.; Phillips, M. C.; Rothblat, G. H. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 1997, 99, 773–780.

23

Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2005, 2, 335–351.

24

Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035.

25

Zimmer, S.; Grebe, A.; Bakke, S. S.; Bode, N.; Halvorsen, B.; Ulas, T.; Skjelland, M.; De Nardo, D.; Labzin, L. I.; Kerksiek, A. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 2016, 8, 333ra50.

26

Di Cagno, M. P. The potential of cyclodextrins as novel active pharmaceutical ingredients: A short overview. Molecules 2017, 22, 1.

27

Sana, B.; Johnson, E.; Lim, S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim. Biophys. Acta 2015, 1850, 2544–2551.

28

Besenicar, M. P.; Bavdek, A.; Kladnik, A.; Maček, P.; Anderluh, G. Kinetics of cholesterol extraction from lipid membranes by methyl-β-cyclodextrin—A surface plasmon resonance approach. Biochim. Biophys. Acta 2008, 1778, 175–184.

29

Tobias, R.; Kumaraswamy, S. Biomolecular binding kinetics assays on the octet platform. FortéBIO 2014, 14, 1–21.

30

Buecheler, J. W.; Howard, C. B.; de Bakker, C. J.; Goodall, S.; Jones, M. L.; Win, T.; Peng, T.; Tan, C. H.; Chopra, A.; Mahler, S. M.; et al. Development of a protein nanoparticle platform for targeting egfr expressing cancer cells. J. Chem. Technol. Biotechnol. 2015, 90, 1230–1236.

31

Li, L.; Fang, C. J.; Ryan, J. C.; Niemi, E. C.; Lebrón, J. A.; Björkman, P. J.; Arase, H.; Torti, F. M.; Torti, S. V.; Nakamura, M. C.; et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. USA 2010, 107, 3505–3510.

32

Kwon, C.; Kang, Y. J.; Jeon, S.; Jung, S.; Hong, S. Y.; Kang, S. Development of protein-cage-based delivery nanoplatforms by polyvalently displaying β-cyclodextrins on the surface of ferritins through copper(Ⅰ)-catalyzed azide/alkyne cycloaddition. Macromol. Biosci. 2012, 12, 1452–1458.

33

Rosenbaum, A. I.; Zhang, G. T.; Warren, J. D.; Maxfield, F. R. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in niemann-pick type C mutant cells. Proc. Natl. Acad. Sci. USA 2010, 107, 5477–5482.

34

Li, W.; Xu, L. H.; Forssell, C.; Sullivan, J. L.; Yuan, X. M. Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques. Exp. Biol. Med. (Maywood) 2008, 233, 818–826.

35

Fenyvesi, F.; Réti-Nagy, K.; Bacsó, Z.; Gutay-Tóth, Z.; Malanga, M.; Fenyvesi, é.; Szente, L.; Váradi, J.; Ujhelyi, Z.; Fehér, P. et al. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial caco-2 cells by fluid-phase endocytosis. PLoS One 2014, 9, e84856.

36

Loftsson, T.; Brewster, M. E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621.

37

Bachman, J. Site-directed mutagenesis. Methods Enzymol. 2013, 529, 241–248.

File
12274_2019_2525_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 July 2019
Revised: 21 September 2019
Accepted: 23 September 2019
Published: 29 November 2019
Issue date: December 2019

Copyright

© The Author(s) 2019

Acknowledgements

Acknowledgements

This work was support by NTU-Northwestern Institute for Nanomedicine grant (No. M4081504.F40.706022).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return