Journal Home > Volume 12 , Issue 11

The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properties. The increasing demand and production of such materials has resulted in a question of comparability between existing models and adequate volume-weighted size-determining measurement techniques. Small-angle X-ray scattering (SAXS) is a well-established method for obtaining nanostructural information from particle systems while operating sample quantities up to a commercial scale with a large amount of statistically based data. This work utilizes laboratory SAXS to characterize cadmium selenide nanocrystals with band edge energies between 1.97 and 3.08 eV. The evaluation of the scattering patterns is based on an indirect Fourier transformation (IFT), while dimensional parameters are derived from the model-free pair distance distribution functions (Dmode and Dg), as well as the modeled volume (Dv) and number (Dn)-weighted size-density distributions. We find that comparable data from Dn agree well with existing X-ray diffraction (XRD) and with transmission electron microscopy (TEM) results described in literature; this qualifies SAXS as an equivalent integral characterization method. Although based on an estimate, the radius of gyration yields equivalent accurate results. Additionally, corresponding volume-weighted data are shown that can be useful when transferring information to other techniques. Dmode parametrization represents the largest estimated size of the sample and implies that particles interact and deviate from the spherical morphology, whereas Dv demonstrates results not considering such effects. A full set of the parameters discussed quantifies the quality of a sample.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dimensional characterization of cadmium selenide nanocrystals via indirect Fourier transform evaluation of small-angle X-ray scattering data

Show Author's information Julian Cedric Porsiel1,2Bilal Temel1Alfred Schirmacher2Egbert Buhr2,3Georg Garnweitner1,3( )
Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweig38104Germany
Physikalisch-Technische Bundesanstalt BraunschweigBraunschweig38116Germany
Laboratory for Emerging NanometrologyTechnische Universität BraunschweigBraunschweig38106Germany

Abstract

The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properties. The increasing demand and production of such materials has resulted in a question of comparability between existing models and adequate volume-weighted size-determining measurement techniques. Small-angle X-ray scattering (SAXS) is a well-established method for obtaining nanostructural information from particle systems while operating sample quantities up to a commercial scale with a large amount of statistically based data. This work utilizes laboratory SAXS to characterize cadmium selenide nanocrystals with band edge energies between 1.97 and 3.08 eV. The evaluation of the scattering patterns is based on an indirect Fourier transformation (IFT), while dimensional parameters are derived from the model-free pair distance distribution functions (Dmode and Dg), as well as the modeled volume (Dv) and number (Dn)-weighted size-density distributions. We find that comparable data from Dn agree well with existing X-ray diffraction (XRD) and with transmission electron microscopy (TEM) results described in literature; this qualifies SAXS as an equivalent integral characterization method. Although based on an estimate, the radius of gyration yields equivalent accurate results. Additionally, corresponding volume-weighted data are shown that can be useful when transferring information to other techniques. Dmode parametrization represents the largest estimated size of the sample and implies that particles interact and deviate from the spherical morphology, whereas Dv demonstrates results not considering such effects. A full set of the parameters discussed quantifies the quality of a sample.

Keywords: quantum dots, transmission electron microscopy, optical absorption spectroscopy, small angle scattering, indirect Fourier transform, particle size distribution

References(58)

1

Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 2013, 25, 4986–5010.

2

Owen, J. S.; Chan, E. M.; Liu, H. T.; Alivisatos, A. P. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J. Am. Chem. Soc. 2010, 132, 18206–18213.

3

Zhou, J.; Liu, Y.; Tang, J.; Tang, W. H. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today 2017, 20, 360–376.

4

Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe Nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

5

Harrell, S. M.; McBride, J. R.; Rosenthal, S. J. Synthesis of ultrasmall and magic-sized CdSe nanocrystals. Chem. Mater. 2013, 25, 1199–1210.

6

Washington II, A. L.; Foley, M. E.; Cheong, S.; Quffa, L.; Breshike, C. J.; Watt, J.; Tilley, R. D.; Strouse, G. F. Ostwald's rule of stages and its role in CdSe quantum dot crystallization. J. Am. Chem. Soc. 2012, 134, 17046–17052.

7

Chang, J.; Waclawik, E. R. Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media. RSC Adv. 2014, 4, 23505–23527.

8

Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48–66.

9

Silvi, S.; Credi, A. Luminescent sensors based on quantum dot-molecule conjugates. Chem. Soc. Rev. 2015, 44, 4275–4289.

10

Frecker, T.; Bailey, D.; Arzeta-Ferrer, X.; McBride, J.; Rosenthal, S. J. Review—Quantum dots and their application in lighting, displays, and biology. ECS J. Solid State Sci. Technol. 2016, 5, R3019–R3031.

11

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

12

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

13

Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmüller, A.; Weller, H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 1999, 103, 3065–3069.

14

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

15

Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U. Molecular limit of a bulk semiconductor: Size dependence of the "band gap" in CdSe cluster molecules. J. Am. Chem. Soc. 2000, 122, 2673–2674.

16

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

17

Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.

18

Pyrz, W. D.; Buttrey, D. J. Particle size determination using TEM: A discussion of image acquisition and analysis for the novice microscopist. Langmuir 2008, 24, 11350–11360.

19

Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931–1936.

20

Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems—A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97.

21

Singh, A.; Vihinen, J.; Frankberg, E.; Hyvärinen, L.; Honkanen, M.; Levänen, E. Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis. Nanoscale Res. Lett. 2016, 11, 447.

22

Mori, Y.; Furukawa, M.; Hayashi, T.; Nakamura, K. Size distribution of gold nanoparticles used by small angle X-ray scattering. Particul. Sci. Technol. 2006, 24, 97–103.

23

Goertz, V.; Dingenouts, N.; Nirschl, H. Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part. Part. Syst. Charact. 2009, 26, 17–24.

24

Pauw, B. R.; Pedersen, J. S.; Tardif, S.; Takata, M.; Iversen, B. B. Improvements and considerations for size distribution retrieval from small-angle scattering data by Monte Carlo methods. J. Appl. Crystallogr. 2013, 46, 365–371.

25

Maes, J.; Castro, N.; de Nolf, K.; Walravens, W.; Abécassis, B.; Hens, Z. Size and concentration determination of colloidal nanocrystals by small-angle X-ray scattering. Chem. Mater. 2018, 30, 3952–3962.

26

Bressler, I.; Pauw, B. R.; Thünemann, A. F. McSAS: Software for the retrieval of model parameter distributions from scattering patterns. J. Appl. Crystallogr. 2015, 48, 962–969.

27

Karel Čapek, R.; Moreels, I.; Lambert, K.; de Muynck, D.; Zhao, Q.; van Tomme, A.; Vanhaecke, F.; Hens, Z. Optical properties of zincblende cadmium selenide quantum dots. J. Phys. Chem. C 2010, 114, 6371–6376.

28

Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 1977, 10, 415–421.

29

Bergmann, A.; Fritz, G.; Glatter, O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J. Appl. Crystallogr. 2000, 33, 1212–1216.

30

ISO/TS 17466: 2015: Use of UV-Vis absorption spectroscopy in the characterization of cadmium chalcogenide colloidal quantum dots. International Organization for Standardization, 2015, 07. 120 Nanotechnologies.

31

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

32

van Embden, J.; Mulvaney, P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, 10226–10233.

33

Pauw, B. R.; Smith, A. J.; Snow, T.; Terrill, N. J.; Thünemann, A. F. The modular small-angle X-ray scattering data correction sequence. J. Appl. Crystallogr. 2017, 50, 1800–1811.

34

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

35

Glatter, O. The interpretation of real-space information from small-angle scattering experiments. J. Appl. Crystallogr. 1979, 12, 166–175.

36

Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press: London, 1982.

37

Guinier, A.; Fournet, G.; Walker, C. B.; Vineyard, G. H. Small-angle scattering of X-rays. Phys. Today 1956, 9, 38.

38

Glatter, O. Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method. J. Appl. Crystallogr. 1980, 13, 7–11.

39

Weyerich, B.; Brunner-Popela, J.; Glatter, O. Small-angle scattering of interacting particles. Ⅱ. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J. Appl. Crystallogr. 1999, 32, 197–209.

40

Müller, K.; Glatter, O. Practical aspects to the use of indirect fourier transformation methods. Die Makromol. Chem. 1982, 183, 465–479.

41

ISO 9276–2: 2001: Representation of results of particle size analysis— Part 2: Calculation of average particle sizes/diameters and moments from particle size distributions. International Organization for Standardization, 2006, 19. 120 Particle size analysis.

42

Kästner, C.; Thünemann, A. F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383–7391.

43

Pauw, B. R.; Kästner, C.; Thünemann, A. F. Nanoparticle size distribution quantification: Results of a small-angle X-ray scattering inter-laboratory comparison. J. Appl. Crystallogr. 2017, 50, 1280–1288.

44

Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 2002, 106, 7619–7622.

45

Li, J. Z.; Chen, J. L.; Shen, Y. M.; Peng, X. G. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 2018, 11, 3991–4004.

46

Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D.; Alivisatos, A. P. Molecular weight, osmotic second virial coefficient, and extinction coefficient of colloidal CdSe nanocrystals. J. Phys. Chem. B 2002, 106, 5500–5505.

47

Sun, J. J.; Goldys, E. M. Linear absorption and molar extinction coefficients in direct semiconductor quantum dots. J. Phys. Chem. C 2008, 112, 9261–9266.

48

Allan, G.; Delerue, C. Confinement effects in PbSe quantum wells and nanocrystals. Phys. Rev. B 2004, 70, 245321.

49

Xia, C. H.; Wu, W. W.; Yu, T.; Xie, X. B.; van Oversteeg, C.; Gerritsen, H. C.; de Mello Donega, C. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 2018, 12, 8350–8361.

50

Moreels, I.; Lambert, K.; de Muynck, D.; Vanhaecke, F.; Poelman, D.; Martins, J. C.; Allan, G.; Hens, Z. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 2007, 19, 6101–6106.

51

Moreels, I.; Lambert, K.; Smeets, D.; de Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030.

52

de Mello Donegá, C.; Koole, R. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. C 2009, 113, 6511–6520.

53

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

54

Ninomiya, S.; Adachi, S. Optical properties of cubic and hexagonal CdSe. J. Appl. Phys. 1995, 78, 4681–4689.

55

Dai, Q. Q.; Song, Y. L.; Li, D. M.; Chen, H. Y.; Kan, S. H.; Zou, B.; Wang, Y. N.; Deng, Y. Q.; Hou, Y. Y.; Yu, S. D. et al. Temperature dependence of band gap in CdSe nanocrystals. Chem. Phys. Lett. 2007, 439, 65–68.

56

Keshari, A. K.; Pandey, A. C. Size and distribution: A comparison of XRD, SAXS and SANS study of Ⅱ–Ⅵ semiconductor nanocrystals. J. Nanosci. Nanotechnol. 2008, 8, 1221–1227.

57

Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109–4117.

58

ISO 22412: 2017: Particle size analysis—Dynamic light scattering (DLS). International Organization for Standardization, 2017, 19. 120 Particle size analysis.

File
12274_2019_2523_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 July 2019
Revised: 16 September 2019
Accepted: 21 September 2019
Published: 09 October 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors thank the Laboratory for Nano and Quantum Engineering (LNQE), Leibniz University Hannover, for the access to the TEM instrument and Dr. Brian Pauw from the Bundesanstalt für Materialforschung und-prüfung (BAM) in Berlin for the scientific discussion about SAXS and the provision of the Ag-reference. We also acknowledge the work of David Niedbalka and Marcel Pastuschek who contributed to this research during their time as students. This research was partially funded by Niedersächsisches Ministerium für Wissenschaft und Kultur through the "Quantumand Nano-Metrology (QUANOMET)" initiative (ZN3245) within the scope of the NP-1 project. Furthermore, we acknowledge financial travel support by the DFG Research Training Group GrK1952 "Metrology for Complex Nanosystems (NanoMet)".

Return