AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires

Shiyao Wu1,2Kai Peng1,2Sergio Battiato3Valentina Zannier3Andrea Bertoni4Guido Goldoni4,5Xin Xie1,2Jingnan Yang1,2Shan Xiao1,2Chenjiang Qian1,2Feilong Song1,2Sibai Sun1,2Jianchen Dang1,2Yang Yu1,2Fabio Beltram3Lucia Sorba3Ang Li6Bei-bei Li1Francesco Rossella3Xiulai Xu1,2,7( )
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
CAS Center for Excellence in Topological Quantum Computation and School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
Laboratorio NESTScuola Normale Superiore and Istituto Nanoscienze-CNRPiazza S. Silvestro 12,I-56127Pisa, Italy
S3Istituto Nanoscienze-CNRVia Campi 213/aModena41125Italy
Dipartimento di Scienze FisicheInformatiche e MatematicheUniversità degli Studi di Modena e Reggio EmiliaVia Campi 213/aModena41125Italy
Beijing Key Lab of Microstructure and Property of Advanced MaterialsBeijing University of TechnologyPingleyuan No.100Beijing100024China
Songshan Lake Materials LaboratoryDongguan523808China
Show Author Information

Graphical Abstract

Abstract

Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires.

References

1

Imamoḡlu, A.; Awschalom, D. D.; Burkard, G.; DiVincenzo, D. P.; Loss, D.; Sherwin, M.; Small, A. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 1999, 83, 4204–4207.

2

Loss, D.; DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120–126.

3

Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

4

Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

5

Menzel, A.; Subannajui, K.; Güder, F.; Moser, D.; Paul, O.; Zacharias, M. Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater. 2011, 21, 4342–4348.

6

Wang, X. D.; Li, Z. Z.; Zhuo, M. P.; Wu, Y. S.; Chen, S.; Yao, J. N.; Fu, H. B. Tunable near-infrared organic nanowire nanolasers. Adv. Funct. Mater. 2017, 27, 1703470.

7

Ali, H.; Zhang, Y. Y.; Tang, J.; Peng, K.; Sun, S. B.; Sun, Y.; Song, F. L.; Falak, A.; Wu, S. Y.; Qian, C. J. et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small 2018, 14, 1704429.

8

Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198–215.

9

Lee, J.; Jo, S. B.; Kim, M.; Kim, H. G.; Shin, J.; Kim, H.; Cho, K. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells. Adv. Mater. 2014, 26, 6706–6714.

10

Hoang, T. B.; Titova, L. V.; Yarrison-Rice, J. M.; Jackson, H. E.; Govorov, A. O.; Kim, Y.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Smith, L. M. Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett. 2007, 7, 588–595.

11

Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett. 2008, 93, 183118.

12

Cross, R. B. M.; De Souza, M. M. Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 2006, 89, 263513.

13

Smith, L. M.; Hoang, T. B.; Titova, L. V.; Jackson, H. E.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J.; Kim, Y.; Joyce, H. J.; Jagadish, C. Spatially resolved photoluminescence imaging of CdS and GaAs/AlGaAs nanowires. AIP Conf. Proc. 2007, 893, 869–870.

14

Xue, H. L.; Kong, X. Z.; Liu, Z. R.; Liu, C. X.; Zhou, J. R.; Chen, W. Y.; Ruan, S. P.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 2007, 90, 201118.

15

Rosenwaks, Y.; Shapira, Y.; Huppert, D. Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. Phys. Rev. B 1992, 45, 9108–9119.

16

Casey, H. C. Jr.; Buehler, E. Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett. 1977, 30, 247–249.

17

Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type Ⅱ ZB-WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648–654.

18

Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198–1201.

19

Bouwes Bavinck, M.; Jöns, K. D.; Zielinski, M.; Patriarche, G.; Harmand, J. C.; Akopian, N.; Zwiller, V. Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett. 2016, 16, 1081–1085.

20

Dick, K. A.; Thelander, C.; Samuelson, L.; Caroff, P. Crystal phase engineering in single InAs nanowires. Nano Lett. 2010, 10, 3494–3499.

21

Assali, S.; Gagliano, L.; Oliveira, D. S.; Verheijen, M. A.; Plissard, S. R.; Feiner, L. F.; Bakkers, E. P. A. M. Exploring crystal phase switching in GaP nanowires. Nano Lett. 2015, 15, 8062–8069.

22

Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D. Optical signatures of coupled quantum dots. Science 2006, 311, 636–639.

23

Kato, Y.; Myers, R. C.; Driscoll, D. C.; Gossard, A. C.; Levy, J.; Awschalom, D. D. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 2003, 299, 1201–1204.

24

Pingenot, J.; Pryor, C. E.; Flatté, M. E. Method for full Bloch sphere control of a localized spin via a single electrical gate. Appl. Phys. Lett. 2008, 92, 222502.

25

Salis, G.; Kato, Y.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C.; Awschalom, D. D. Electrical control of spin coherence in semiconductor nanostructures. Nature 2001, 414, 619–622.

26

Jovanov, V.; Eissfeller, T.; Kapfinger, S.; Clark, E. C.; Klotz, F.; Bichler, M.; Keizer, J. G.; Koenraad, P. M.; Abstreiter, G.; Finley, J. J. Observation and explanation of strong electrically tunable exciton g factors in composition engineered In(Ga)As quantum dots. Phys. Rev. B 2011, 83, 161303.

27

Godden, T. M.; Quilter, J. H.; Ramsay, A. J.; Wu, Y. W.; Brereton, P.; Luxmoore, I. J.; Puebla, J.; Fox, A. M.; Skolnick, M. S. Fast preparation of a single-hole spin in an InAs/GaAs quantum dot in a Voigt-geometry magnetic field. Phys. Rev. B 2012, 85, 155310.

28

Bennett, A. J.; Pooley, M. A.; Cao, Y. M.; Sköld, N.; Farrer, I.; Ritchie, D. A.; Shields, A. J. Voltage tunability of single-spin states in a quantum dot. Nat. Commun. 2013, 4, 1522.

29

Battiato, S.; Wu, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology 2019, 30, 194004.

30

Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and Ⅴ/Ⅲ ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D: Appl. Phys. 2010, 43, 445402.

31

Reimer, M. E.; Bulgarini, G.; Akopian, N.; Hocevar, M.; Bavinck, M. B.; Verheijen, M. A.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 2012, 3, 737.

32

Lagoudakis, K. G.; McMahon, P. L.; Fischer, K. A.; Puri, S.; Müller, K.; Dalacu, D.; Poole, P. J.; Reimer, M. E.; Zwiller, V.; Yamamoto, Y. Initialization of a spin qubit in a site-controlled nanowire quantum dot. New J. Phys. 2016, 18, 053024.

33

Haffouz, S.; Zeuner, K. D.; Dalacu, D.; Poole, P. J.; Lapointe, J.; Poitras, D.; Mnaymneh, K.; Wu, X. H.; Couillard, M.; Korkusinski, M. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett. 2018, 18, 3047–3052.

34

Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; M. Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature. 2008, 456, 369–372.

35

Murayama, M.; Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 1994, 49, 4710–4724.

36

Perera, S.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X. et al. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 053110.

37

Zhang, L. J.; Luo, J. W.; Zunger, A.; Akopian, N.; Zwiller, V.; Harmand, J. C. Wide InP nanowires with wurtzite/zincblende superlattice segments are type-Ⅱ whereas narrower nanowires become type-Ⅰ: An atomistic pseudopotential calculation. Nano Lett. 2010, 10, 4055–4060.

38

Kim, C. W.; Stringfellow, G. B.; Sadwick, L. P. CBE growth of InP using BPE and TBP: a comparative study. J. Cryst. Growth. 1996, 164, 104–111.

39

Mrowinski, P.; Musial, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sęk, G. Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm. Appl. Phys. Lett. 2015, 106, 053114.

40

Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A. A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T. L. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315.

41

Brunner, K.; Abstreiter, G.; Böhm, G.; Tränkle, G.; Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. , 1994, 73, 1138–1141.

42

Fontana, Y.; Corfdir, P.; Van Hattem, B.; Russo-Averchi, E.; Heiss, M.; Sonderegger, S.; Magen, C.; Arbiol, J.; Phillips, R. T.; Morral, A. F. I. Exciton footprint of self-assembled AlGaAs quantum dots in core-shell nanowires. Phys. Rev. B 2014, 90, 075307.

43

Tang, J.; Cao, S.; Gao, Y. A.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett. 2014, 105, 041109.

44

Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 2013, 12, 483–493.

45

Witek, B. J.; Heeres, R. W.; Perinetti, U.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys. Rev. B 2011, 84, 195305.

46

Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B 2007, 76, 033301.

47

van Bree, J.; Silov, A. Y.; van Maasakkers, M. L.; Pryor, C. E.; Flatté, M. E.; Koenraad, P. M. Anisotropy of electron and hole g tensors of quantum dots: An intuitive picture based on spin-correlated orbital currents. Phys. Rev. B 2016, 93, 035311.

48

Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; Zhukov, E. A.; Semina, M. A.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Bayer, M. Large anisotropy of electron and hole g factors in infrared-emitting InAs/InAlGaAs self-assembled quantum dots. Phys. Rev. B 2016, 93, 125302.

49

Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B 1998, 57, 9088–9096.

50

Cao, S.; Tang, J.; Sun, Y.; Peng, K.; Gao, Y. A.; Zhao, Y. H.; Qian, C. J.; Sun, S. B.; Ali, H.; Shao, Y. T. et al. Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects. Nano Res. 2016, 9, 306–316.

51

Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B 2002, 66, 193303.

52

van Bree, J.; Silov, A. Y.; Koenraad, P. M.; Flatté, M. E. Geometric and compositional influences on spin-orbit induced circulating currents in nanostructures. Phys. Rev. B 2014, 90, 165306.

53

Buscemi, F.; Royo, M.; Bertoni, A.; Goldoni, G. Magnetophotoluminescence in GaAs/AlAs core-multishell nanowires: A theoretical investigation. Phys. Rev. B 2015, 92, 165302.

54

Green, M. Solution routes to Ⅲ–Ⅴ semiconductor quantum dots. Curr. Opin. Solid State Mater. Sci. 2002, 6, 355–363.

Nano Research
Pages 2842-2848
Cite this article:
Wu S, Peng K, Battiato S, et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Research, 2019, 12(11): 2842-2848. https://doi.org/10.1007/s12274-019-2522-5
Topics:

712

Views

13

Crossref

N/A

Web of Science

14

Scopus

3

CSCD

Altmetrics

Received: 17 June 2019
Revised: 23 August 2019
Accepted: 19 September 2019
Published: 18 October 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return