Journal Home > Volume 12 , Issue 12

The growth of Li dendrites and the instability of the solid electrolyte interphase (SEI) layer during plating/stripping has hindered the practical application of high-energy-density batteries based on a lithium metal anode. Building a stable interfacial layer is effective in preventing lithium corrosion by the electrolyte and controlling the deposition of lithium metal. Here, we present a robust polydopamine-Cu ion (PDA-Cu2+) coating layer formed by the aggregation of nanoparticles and Cu ions, which can be obtained by a subtle immersion strategy. We demonstrate that the PDA-Cu2+ protective layer, with a unique structure comprising nanoparticles, can regulate and guide Li metal deposition, and together with Cu ions, forms a lubricating surface to facilitate uniform Li ion diffusion and induce stable SEI layer formation. Li anodes with this PDA-Cu2+ layer modification ultimately achieve higher Coulombic efficiencies, which are consistently stable for over 650 cycles at 0.5 mA·cm-2 without Li dendrites. The introduced PDA-Cu2+ coating can adhere to any material of any shape; additionally, the operation can be realized on a large scale because of its simplicity. These merits provide a promising approach for developing stable and safe lithium metal batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode

Show Author's information Qianqian Meng1,2Huimin Zhang1Yue Liu1,2Shaobo Huang1,2Tianzhu Zhou1Xiaofei Yang1,3Biyan Wang2Wenfeng Zhang1Hai Ming1Yu Xiang1Meng Li1Gaoping Cao1Yaqin Huang1Li-zhen Fan2Hao Zhang1( )Yuepeng Guan3( )
Beijing Key Laboratory of Advanced Chemical Energy Storage Technologies and MaterialsResearch Institute of Chemical DefenseBeijing100191China
Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
State Key Laboratory of Chemical Resource EngineeringThe Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijing100029China

Abstract

The growth of Li dendrites and the instability of the solid electrolyte interphase (SEI) layer during plating/stripping has hindered the practical application of high-energy-density batteries based on a lithium metal anode. Building a stable interfacial layer is effective in preventing lithium corrosion by the electrolyte and controlling the deposition of lithium metal. Here, we present a robust polydopamine-Cu ion (PDA-Cu2+) coating layer formed by the aggregation of nanoparticles and Cu ions, which can be obtained by a subtle immersion strategy. We demonstrate that the PDA-Cu2+ protective layer, with a unique structure comprising nanoparticles, can regulate and guide Li metal deposition, and together with Cu ions, forms a lubricating surface to facilitate uniform Li ion diffusion and induce stable SEI layer formation. Li anodes with this PDA-Cu2+ layer modification ultimately achieve higher Coulombic efficiencies, which are consistently stable for over 650 cycles at 0.5 mA·cm-2 without Li dendrites. The introduced PDA-Cu2+ coating can adhere to any material of any shape; additionally, the operation can be realized on a large scale because of its simplicity. These merits provide a promising approach for developing stable and safe lithium metal batteries.

Keywords: lithium metal anode, polydopamine, Cu ions, interfacial layer

References(55)

1

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

3

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

4

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

5

Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

6

Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

7

Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

8

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

9

Li, Y. S.; Leung, K.; Qi, Y. Computational exploration of the Li-electrode | electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 2016, 49, 2363–2370.

10

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

11

Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G., Jr.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

12

Lin, D. C.; Liu, Y. Y.; Li, Y. B.; Li, Y. Z.; Pei, A.; Xie, J.; Huang, W.; Cui, Y. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 2019, 11, 382–389.

13

Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

14

Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.

15

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

16

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

17

Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615–11625.

18

Huang, S. B.; Zhang, W. F.; Ming, H.; Cao, G. P.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 2019, 19, 1832–1837.

19

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. A. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

20

Li, S. Y.; Fan, L.; Lu, Y. Y. Rational design of robust-flexible protective layer for safe lithium metal battery. Energy Storage Mater. 2019, 18, 205–212.

21

Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Scordilis Kelley, C.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

22

Shiraishi, S.; Kanamura, K.; Takehara, Z. I. Influence of initial surface condition of lithium metal anodes on surface modification with HF. J. Appl. Electrochem. 1999, 29, 867–879.

23

Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889–6896.

24

Arnbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 2002, 47, 1423–1439.

25

Wu, F.; Chen, N.; Chen, R. J.; Zhu, Q. Z.; Qian, J.; Li, L. "Liquid-in-solid" and "solid-in-liquid" electrolytes with high rate capacity and long cycling life for lithium-ion batteries. Chem. Mater. 2016, 28, 848–856.

26

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

27

Fan, L.; Zhuang, H. L.; Gao, L. N.; Lu, Y. Y.; Archer, L. A. Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 2017, 5, 3483–3492.

28

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

29

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

30

Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.

31

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

32

Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. A. et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815–4820.

33

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

34

Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar lithium metal anodes. Angew. Chem. 2017, 129, 14395–14399.

35

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

36

Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev. 2008, 108, 2554–2584.

37

Kang, S. M.; Rho, J.; Choi, I. S.; Messersmith, P. B.; Lee, H. Norepinephrine: Material-independent, multifunctional surface modification reagent. J. Am. Chem. Soc. 2009, 131, 13224–13225.

38

Waite, J. H.; Qin, X. X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 2001, 40, 2887–2893.

39

Wei, Q.; Zhang, F. L.; Li, J.; Li, B. J.; Zhao, C. S. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 2010, 1, 1430–1433.

40

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

41

Ai, K. L.; Liu, Y. L.; Ruan, C. P.; Lu, L. H.; Lu, G. Q. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998–1003.

42

Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater. 2012, 24, 3481–3485.

43

Zhang, C.; Li, H. N.; Du, Y.; Ma, M. Q.; Xu, Z. K. CuSO4/H2O2-triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir 2017, 33, 1210–1216.

44

Ouyang, R. Z.; Lei, J. P.; Ju, H. X. Surface molecularly imprinted nanowirefor protein specific recognition. Chem. Commun. 2008, 5761–5763.

45

Zheng, W. C.; Fan, H. L.; Wang, L.; Jin, Z. X. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015, 31, 11671–11677.

46

Luo, R. F.; Tang, L. L.; Zhong, S.; Yang, Z. L.; Wang, J.; Weng, Y. J.; Tu, Q. F.; Jiang, C. X.; Huang, N. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl. Mater. Interfaces 2013, 5, 1704–1714.

47

Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717.

48

Jeon, Y. J.; Kang, S. M. Chemically stable poly(norepinephrine) coatings on solid substrates by post-oxidation. Polym. Degrad. Stab. 2013, 98, 1271–1273.

49

Chang, C. C.; Kolewe, K. W.; Li, Y. Y.; Kosif, I.; Freeman, B. D.; Carter, K. R.; Schiffman, J. D.; Emrick, T. Underwater superoleophobic surfaces prepared from polymer zwitterion/dopamine composite coatings. Adv. Mater. Interfaces 2016, 3, 1500521.

50

Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M. J.; Freeman, B. D.; Park, H. B. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl. Mater. Interfaces 2013, 5, 233–238.

51

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

52

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

53

Meng, Q. Q.; Deng, B.; Zhang, H. M.; Wang, B. Y.; Zhang, W. F.; Wen, Y. H.; Ming, H.; Zhu, X. Y.; Guan, Y. P.; Xiang, Y. et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater. 2019, 16, 419–425.

54

Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 2004, 170, 83–91.

55

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

File
12274_2019_2519_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2019
Revised: 26 August 2019
Accepted: 15 September 2019
Published: 23 October 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21875284).

Return