Journal Home > Volume 12 , Issue 11

Two-dimensional (2D) WS2 offers great prospects for assembling next-generation optoelectronic and electronic devices due to its thickness-dependent optical and electronic properties. However, layer-number-controlled growth of WS2 is still a challenge up to now. This work presents controlled growth of bilayer WS2 triangular flakes by carbon-nanoparticle-assisted chemical vapor deposition (CVD) process. The growth mechanism is also proposed. In addition, the field effect transistors (FETs) based on monolayer and bilayer WS2 are also fabricated and investigated. The bilayer FET displays a mobility of 34 cm2·V-1·s-1, much higher than that of the monolayer FET. The high figures of merit make bilayer WS2 a promising candidate in high-performance electronics and optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition

Show Author's information Jieyuan Liang1Lijie Zhang1( )Xiaoxiao Li1Baojun Pan1Tingyan Luo1Dayan Liu1Chao Zou1Nannan Liu1Yue Hu1Keqin Yang1Shaoming Huang2( )
Key Laboratory of Carbon Materials of Zhejiang ProvinceInstitute of New Materials and Industrial TechnologiesCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035China
School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China

Abstract

Two-dimensional (2D) WS2 offers great prospects for assembling next-generation optoelectronic and electronic devices due to its thickness-dependent optical and electronic properties. However, layer-number-controlled growth of WS2 is still a challenge up to now. This work presents controlled growth of bilayer WS2 triangular flakes by carbon-nanoparticle-assisted chemical vapor deposition (CVD) process. The growth mechanism is also proposed. In addition, the field effect transistors (FETs) based on monolayer and bilayer WS2 are also fabricated and investigated. The bilayer FET displays a mobility of 34 cm2·V-1·s-1, much higher than that of the monolayer FET. The high figures of merit make bilayer WS2 a promising candidate in high-performance electronics and optoelectronics.

Keywords: carbon nanoparticles, chemical vapor deposition (CVD), growth, bilayer WS2

References(43)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Plutnar, J.; Pumera, M.; Sofer, Z. The chemistry of CVD graphene. J. Mater. Chem. C 2018, 6, 6082-6101.

3

Wu, X.; Mu, F. W.; Wang, Y. H.; Zhao, H. Y. Graphene and graphene-based nanomaterials for DNA detection: A review. Molecules 2018, 23, 2050.

4

Su, S.; Sun, H. F.; Xu, F.; Yuwen, L.; Fan, C. H.; Wang, L. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchimica Acta 2014, 181, 1497-1503.

5

Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063-2070.

6

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

7

Wan, Y.; Xiao J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater. 2018, 30, 1703888.

8

Zhou, Y. Q.; Tan, H. J.; Sheng, Y. W.; Fan, Y.; Xu, W. S.; Warner, J. H. Utilizing interlayer excitons in bilayer WS2 for increased photovoltaic response in ultrathin graphene vertical cross-bar photodetecting tunneling transistors. ACS Nano 2018, 12, 4669-4677.

9

Kim, H. C.; Kim, H.; Lee, J. U.; Lee, H. B.; Choi, D. H.; Lee, J. H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H. et al. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 2015, 9, 6854-6860.

10

Li, S. L.; Wakabayash, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546-3552.

11

Yang, R. L.; Feng, S. H.; Xiang, J. Y.; Jia, Z. Y.; Mu, C. P.; Wen, F. S.; Liu, Z. Y. Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulfide grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2017, 9, 42001-42010.

12

Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semiconductors 2017, 38, 034001.

13

Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater. 2018, 28, 1805171.

14

Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.

15

Thripuranthaka, M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158-1163.

16

Lin, H. C.; Wang, J. W.; Luo, Q. Q.; Peng, H.; Luo, C. H.; Qi, R. J.; Huang, R.; Travas-Sejdic, J.; Duan, C. G. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J. Alloys Compd. 2017, 699, 222-229.

17

Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215-21222.

18

Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 2013, 7, 5235-5242.

19

Zheng, J. J.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

20

Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688-1695.

21

Samad, L.; Bladow, S. M.; Ding, Q.; Zhuo, J. Q.; Jacobberger, R. M.; Arnold, M. S.; Jin, S. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 2016, 10, 7039-7046.

22

Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217-14223.

23

Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464-472.

24

Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852-1857.

25

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

26

Tian, H.; Khanaki, A.; Das, P.; Zheng, R. J.; Cui, Z. J.; He, Y. W.; Shi, W. H.; Xu, Z. G.; Lake, R.; Liu, J. L. Role of carbon interstitials in transition metal substrates on controllable synthesis of high-quality large-area two-dimensional hexagonal boron nitride layers. Nano Lett. 2018, 18, 3352-3361.

27

Ismach, A.; Chou, H.; Mende, P.; Dolocan, A.; Addou, R.; Aloni, S.; Wallace, R.; Feenstra, R.; Ruoff, R. S.; Colombo, L. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater. 2017, 4, 025117.

28

Fan, X. P.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Xu, T.; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 2017, 11, 4892-4898.

29

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731-1737.

30

Veres, M.; Füle, M.; Tóth, S.; Koós, M.; Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 2004, 13, 1412-1415.

31

Saxena, K.; Shukla, A. K.; Avasthi, D. K.; Kabiraj, D.; Vankar, V. D. Raman and electron field emission studies of the order-disorder transition in Ar ion implanted graphite. Nucl Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms 2014, 318, 276-280.

32

Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

33

Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974-5980.

34

McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154.

35

Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater. 2017, 29, 1603550.

36

Xu, Z. Q.; Zhang, Y. P.; Lin, S. H.; Zheng, C. X.; Zhong, Y. L.; Xia, X.; Li, Z. P.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y. B. et al. Synthesis and transfer of large-area monolayer WS2 crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano 2015, 9, 6178-6187.

37

Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435-22444.

38

Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755.

39

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

40

Chen, F.; Ding, S.; Su, W. T. A feasible approach to fabricate two-dimensional WS2 flakes: From monolayer to multilayer. Ceram. Int. 2018, 44, 22108-22112.

41

Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019-2025.

42

Gaur, A. P. S.; Sahoo, S.; Scott, J. F.; Katiyar, R. S. Electron-phonon interaction and double-resonance Raman studies in monolayer WS2. J. Phys. Chem. C 2015, 119, 5146-5151.

43

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.

File
12274_2019_2516_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2019
Revised: 31 July 2019
Accepted: 12 September 2019
Published: 11 October 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 51920105004, 51420105002, and 51572199), and the Zhejiang Provincial Natural Science Foundation of China (No. LY19E030008). J. L. would like to thank Yaqi Huang for drawing the schematic.

Return