Journal Home > Volume 12 , Issue 11

Growth of two-dimensional (2D) organic single crystals (2DOSCs) on water surface has attracted increasing attention, because it can serve as a molecularly flat and defect-free substrate. However, large-area growth of 2DOSCs with controllable crystal orientation on water surface remains a key challenge. Herein, we develop a simple method, i.e. external-force-driven solution epitaxy (EFDSE), for the large-area growth of 2DOSCs at air/water interface. Using 2, 7-didecylbenzothienobenzothiophene (C10-BTBT) as an example, high-quality 2D C10-BTBT crystals on centimeter scale are generated by directionally controlling the spreading of organic solution on water surface with external force. Benefiting from the controllable crystal orientation with optimal charge transport, the corresponding 2DOSC-based organic field-effect transistors (OFETs) exhibit a high carrier mobility of 13.5 cm2·V-1·s-1 (effective mobility ≈ 5.4 cm2·V-1·s-1 according to a reliability factor of 40%), which represents the best result achieved for water-surface-assembled 2DOSC-based OFETs. Furthermore, by transferring the C10-BTBT 2DOSCs to flexible substrates, devices with excellent bending stability are achieved. It is anticipated that our method will provide new insight into the controllable growth of large-area 2DOSCs for high-performance organic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors

Show Author's information Jinwen WangWei DengWei WangRuofei JiaXiuzhen XuYanling XiaoXiujuan ZhangJiansheng Jie( )Xiaohong Zhang( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhou215123China

Abstract

Growth of two-dimensional (2D) organic single crystals (2DOSCs) on water surface has attracted increasing attention, because it can serve as a molecularly flat and defect-free substrate. However, large-area growth of 2DOSCs with controllable crystal orientation on water surface remains a key challenge. Herein, we develop a simple method, i.e. external-force-driven solution epitaxy (EFDSE), for the large-area growth of 2DOSCs at air/water interface. Using 2, 7-didecylbenzothienobenzothiophene (C10-BTBT) as an example, high-quality 2D C10-BTBT crystals on centimeter scale are generated by directionally controlling the spreading of organic solution on water surface with external force. Benefiting from the controllable crystal orientation with optimal charge transport, the corresponding 2DOSC-based organic field-effect transistors (OFETs) exhibit a high carrier mobility of 13.5 cm2·V-1·s-1 (effective mobility ≈ 5.4 cm2·V-1·s-1 according to a reliability factor of 40%), which represents the best result achieved for water-surface-assembled 2DOSC-based OFETs. Furthermore, by transferring the C10-BTBT 2DOSCs to flexible substrates, devices with excellent bending stability are achieved. It is anticipated that our method will provide new insight into the controllable growth of large-area 2DOSCs for high-performance organic devices.

Keywords: organic field-effect transistors, external-force-driven solution epitaxy, two-dimensional organic single crystals, high mobility

References(33)

1

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

2

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotech. 2014, 9, 768-779.

3

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 2008, 321, 385-388.

4

Deng, W.; Zhang, X. J.; Wang, L.; Wang, J. C.; Shang, Q. X.; Zhang, X. H.; Huang, L. M.; Jie, J. S. Wafer-scale precise patterning of organic single-crystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater. 2015, 27, 7305-7312.

5

Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Progr. Mater. Sci. 2015, 73, 44-126.

6

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899-907.

7

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 2014, 9, 780-793.

8

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.

9

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.

10

Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater. 2018, 30, 1704759.

11

Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059-2063.

12

Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc. 2018, 140, 5339-5342.

13

Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191-3198.

14

Kim, J. H.; Park, S. K.; Kim, J. H.; Whang, D. R.; Yoon, W. S.; Park, S. Y. Self-assembled organic single crystalline nanosheet for solution processed high-performance n-channel field-effect transistors. Adv. Mater. 2016, 28, 6011-6015.

15

He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

16

Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by "solution epitaxy". Angew. Chem., Int. Ed. 2016, 55, 9519-9523.

17

He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv. 2017, 3, e1701186.

18

Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 2018, 4, eaao5758.

19

Arai, S.; Inoue, S.; Hamai, T.; Kumai, R.; Hasegawa, T. Semiconductive single molecular bilayers realized using geometrical frustration. Adv. Mater. 2018, 30, 1707256.

20

Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B. C.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 2016, 116, 016602.

21

Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.

22

Liu, D. H.; Chen, X. S.; Hu, Y. B.; Sun, T.; Song, Z. B.; Zheng, Y. J.; Cao, Y. B.; Cai, Z.; Cao, M.; Peng, L. et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat. Commun. 2018, 9, 193.

23

Schweicher, G.; Lemaur, V.; Niebel, C.; Ruzié, C.; Diao, Y.; Goto, O.; Lee, W. Y.; Kim, Y.; Arlin, J. B.; Karpinska, J. et al. Bulky end-capped[1]benzothieno[3, 2-b]benzothiophenes: Reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater. 2015, 27, 3066-3072.

24

Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater. 2008, 20, 3388-3392.

25

Xu, Y.; Sun, H. B.; Liu, A.; Zhu, H. H.; Li, B. H.; Minari, T.; Balestra, F.; Ghibaudo, G.; Noh, Y. Y. Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater. 2018, 28, 1803907.

26

Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 2017, 17, 2-7.

27

Deng, W.; Zhang, X. J.; Wang, J. C.; Shang, Q. X.; Gong, C.; Zhang, X. H.; Zhang, Q.; Jie, J. S. Very facile fabrication of aligned organic nanowires based high-performance top-gate transistors on flexible, transparent substrate. Org. Electron. 2014, 15, 1317-1323.

28

Deng, W.; Zhang, X. J.; Dong, H. L.; Jie, J. S.; Xu, X. Z.; Liu, J.; He, L.; Xu, L.; Hu, W. P.; Zhang, X. H. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater. Today 2019, 24, 17-25.

29

Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Patterning organic single-crystal transistor arrays. Nature 2006, 444, 913-917.

30

Deng, W.; Zhang, X. J.; Pan, H. H.; Shang, Q. X.; Wang, J. C.; Zhang, X. H.; Zhang, X. W.; Jie, J. S. A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates. Sci. Rep. 2014, 4, 5358.

31

Minari, T.; Kano, M.; Miyadera, T.; Wang, S. D.; Aoyagi, Y.; Tsukagoshi, K. Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. Appl. Phys. Lett. 2009, 94, 093307.

32

Kan, X. N.; Xiao, C. Y.; Li, X. M.; Su, B.; Wu, Y. C.; Jiang, W.; Wang, Z. H.; Jiang, L. A dewetting-induced assembly strategy for precisely patterning organic single crystals in OFETs. ACS Appl. Mater. Interface 2016, 8, 18978-18984.

33

Park, K. S.; Cho, B.; Baek, J.; Hwang, J. K.; Lee, H.; Sung, M. Single-crystal organic nanowire electronics by direct printing from molecular solutions. Adv. Funct. Mater. 2013, 23, 4776-4784.

Video
12274_2019_2515_MOESM1_ESM.mp4
File
12274_2019_2515_MOESM2_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 June 2019
Revised: 27 August 2019
Accepted: 02 September 2019
Published: 23 September 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672180, 51622306, and 21673151), Natural Science Foundation of Jiangsu Province of China (No. BK20180845), Qing Lan Project, 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University and Beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Return