Journal Home > Volume 12 , Issue 11

Designing a highly efficient non-precious based oxygen reduction reaction (ORR) electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells. Herein, we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere (NHCS) for ORR. What's interesting is that the carbon microsphere is composed of two-dimensional (2D) nanoplate that could provide more exposed active sites. The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure. The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial Pt/C catalyst. Moreover, it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm-2 and high specific capacity of 701 mA·h·g-1. The special hollow structure composed 2D nanoplate, high surface area, as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity. The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

Show Author's information Yanqiang Li1,§( )Huiyong Huang1,§Siru Chen3( )Xin Yu1Chao Wang1Tingli Ma2( )
State Key Laboratory of Fine ChemicalsSchool of Petroleum and Chemical EngineeringDalian University of TechnologyPanjin CampusPanjin124221China
Graduate School of Life Science and Systems EngineeringKyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196Japan
Center for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China

§ Yanqiang Li and Huiyong Huang contributed equally to this work.

Abstract

Designing a highly efficient non-precious based oxygen reduction reaction (ORR) electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells. Herein, we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere (NHCS) for ORR. What's interesting is that the carbon microsphere is composed of two-dimensional (2D) nanoplate that could provide more exposed active sites. The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure. The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial Pt/C catalyst. Moreover, it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm-2 and high specific capacity of 701 mA·h·g-1. The special hollow structure composed 2D nanoplate, high surface area, as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity. The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.

Keywords: oxygen reduction reaction, Zn-air battery, Fe3O4 , N doping, hollow microsphere

References(52)

1

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.

2

Wang, T. T.; Wu, J. H.; Liu, Y. L.; Cui, X.; Ding, P.; Deng, J.; Zha, C. Y.; Coy, E.; Li, Y. G. Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Mater. 2019, 16, 24-30.

3

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.

4

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81-87.

5

Wang, N.; Li, L. G.; Zhao, D. K.; Kang, X. W.; Tang, Z. H.; Chen, S. W. Graphene composites with cobalt sulfide: Efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Small 2017, 13, 1701025.

6

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.

7

Tian, H.; Wang, N.; Xu, F. G.; Zhang, P. F.; Hou, D.; Mai, Y. Y.; Feng, X. L. Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen reduction catalysis. J. Mater. Chem. A 2018, 6, 10354-10360.

8

Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

9

Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

10

Tang, F.; Lei, H. T.; Wang, S. J.; Wang, H. X.; Jin, Z. X. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale 2017, 9, 17364-17370.

11

Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675-3679.

12

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650-2676.

13

Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.

14

Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894-1901.

15

Han, C.; Li, Q.; Wang, D. W.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction. Small 2018, 14, 1703642.

16

Luo, H.; Jiang, W. J.; Zhang, Y.; Niu, S.; Tang, T.; Huang, L. B.; Chen, Y. Y.; Wei, Z. D.; Hu, J. S. Self-terminated activation for high-yield production of N, P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon 2018, 128, 97-105.

17

Chai, G. L.; Qiu, K.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186-1195.

18

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.

19

Borghei, M.; Laocharoen, N.; Kibena-Põldsepp, E.; Johansson, L. S.; Campbell, J.; Kauppinen, E.; Tammeveski, K.; Rojas, O. J. Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Appl. Catal. B: Environ. 2017, 204, 394-402.

20

Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442-451.

21

Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Facile synthesis of N, S co-doped porous carbons from a dual-ligand metal organic framework for high performance oxygen reduction reaction catalysts. Electrochim. Acta 2017, 254, 148-154.

22

Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555-5562.

23

Hua, Y. Q.; Jiang, T. T.; Wang, K.; Wu, M. M.; Song, S. Q.; Wang, Y.; Tsiakaras, P. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor. Appl. Catal. B: Environ. 2016, 194, 202-208.

24

Wang, H. T.; Wang, W.; Xu, Y. Y.; Dong, S.; Xiao, J. W.; Wang, F.; Liu, H. F.; Xia, B. Y. Hollow nitrogen-doped carbon spheres with Fe3O4 nanoparticles encapsulated as a highly active oxygen-reduction catalyst. ACS Appl. Mater. Interfaces 2017, 9, 10610-10617.

25

Wang, Y.; Liu, H. Y.; Wang, K.; Song, S. Q.; Tsiakaras, P. 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2017, 210, 57-66.

26

Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H. Y.; Kim, B.; Joo, S. H.; Lee, K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem. Soc. Rev. 2018, 47, 8173-8202.

27

Pei, Y. C.; Qi, Z. Y.; Li, X. L.; Maligal-Ganesh, R. V.; Goh, T. W.; Xiao, C. X.; Wang, T. Y.; Huang, W. Y. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A 2017, 5, 6186-6192.

28

Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.

29

Gao, S. Y.; Fan, B. F.; Feng, R.; Ye, C. L.; Wei, X. J.; Liu, J.; Bu, X. H. N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy 2017, 40, 462-470.

30

Singh, D. K.; Jenjeti, R. N.; Sampath, S.; Eswaramoorthy, M. Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 6025-6031.

31

Li, X. C.; Zhang, L.; He, G. H. Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 2016, 99, 514-522.

32

Huang, J.; Cheng, S. P.; Chen, Y. X.; Chen, Z. L.; Luo, H.; Xia, X. H.; Liu, H. B. High-rate capability and long-term cycling of self-assembled hierarchical Fe3O4/carbon hollow spheres through interfacial control. J. Mater. Chem. A 2019, 7, 16720-16727.

33

Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Ma, T. L. Nanowire-templated synthesis of FeNx-decorated carbon nanotubes as highly efficient, universal-pH, oxygen reduction reaction catalysts. Chem. —Eur. J. 2019, 25, 2637-2644.

34

Pan, J.; Song, S. Y.; Li, J. Q.; Wang, F.; Ge, X.; Yao, S.; Wang, X.; Zhang, H. J. Solid ion transition route to 3D S-N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. Nano Res. 2017, 10, 3486-3495.

35

Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Wang, C.; Liu, A. M.; Ma, T. L. Killing two birds with one stone: A highly active tubular carbon catalyst with effective N doping for oxygen reduction and hydrogen evolution reactions. Catal. Lett. 2019, 149, 486-495.

36

Wang, T. H.; Tan, S. X.; Liang, C. H. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 2009, 47, 1880-1883.

37

He, X. J.; Ling, P. H.; Yu, M. X.; Wang, X. T.; Zhang, X. Y.; Zheng, M. D. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 2013, 105, 635-641.

38

Gadipelli, S.; Zhao, T. T.; Shevlin, S. A.; Guo, Z. X. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci. 2016, 9, 1661-1667.

39

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068-7076.

40

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.

41

Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854-11857.

42

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

43

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

44

Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.

45

Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 2017, 29, 1604456.

46

Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904-8912.

47

Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281-7287.

48

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.

49

Zhang, J.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369-3376.

50

Wei, Q. L.; Yang, X. H.; Zhang, G. X.; Wang, D. N.; Zuin, L.; Banham, D.; Yang, L. J.; Ye, S. Y.; Wang, Y. L.; Mohamedi, M. et al. An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Appl. Catal. B: Environ. 2018, 237, 85-93.

51

Xu, P.; Zhang, J.; Jiang, G. P.; Hassan, F.; Choi, J. Y.; Fu, X. G.; Zamani, P.; Yang, L. J.; Banham, D.; Ye, S. Y. et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy 2018, 51, 745-753.

52

Wu, Z. X.; Liu, R.; Wang, J.; Zhu, J.; Xiao, W. P.; Xuan, C. J.; Lei, W.; Wang, D. L. Nitrogen and sulfur Co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 2016, 8, 19086-19092.

File
12274_2019_2512_MOESM1_ESM.pdf (75.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 June 2019
Revised: 15 August 2019
Accepted: 02 September 2019
Published: 07 September 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51772039), the Fundamental Research Funds for the Central University (No. DUT18LK13). The Research Center for Solar Light Energy Conversion, Kyushu Institute of Technology, Japan also supports this work financially.

Return