Journal Home > Volume 12 , Issue 11

Bimetallic platinum-copper (Pt-Cu) alloy nanowires have emerged as a novel class of fuel cell electrocatalysts for oxygen reduction reaction (ORR) due to their intrinsic high catalytic activity and durability, but preparing such electrocatalysts with clean surface via facile method is still a challenge. Herein, PtCu alloy with nanowire networks (NWNs) structure is obtained by a simple modified polyol method accompanied with a salt-mediated self-assembly process in a water/ethylene glycol (EG) mixing media. The formation mechanism of PtCu NWNs including the morphological evolution and the relevant experimental parameters has been investigated systematically. We propose that a micro-interface in H2O-EG media formed with the assistance of disodium dihydrogen pyrophosphate (Na2H2P2O7) and its unique nature of coordinating with Pt2+ or Cu2+ play critical roles in the formation of NWNs. When tested as ORR catalyst, the PtCuNWNs/C exhibits much higher activity and durability than that of PtNWNs/C and commercial Pt/C, even exceeding the target of DOE in 2020. The excellent performance of PtCuNWNs/C could be attributed to the unique structure of NWNs with 2.4 nm ultrathin wavy nanowires and plentiful surface defects and the modified electronic effect caused by alloying with Cu atoms.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction

Show Author's information Dahui Fang1,2,§Lei Wan3,§Qike Jiang4Hongjie Zhang1Xuejun Tang1,2Xiaoping Qin1Zhigang Shao1( )Zidong Wei5( )
Fuel Cell System and Engineering LaboratoryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
University of Chinese Academy of SciencesBeijing100049China
The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
Advanced Electron Microscopy Research GroupDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
College of Chemistry and Chemical EngineeringChongqing UniversityChongqing400044China

§ Dahui Fang and Lei Wan contributed equally to this work.

Abstract

Bimetallic platinum-copper (Pt-Cu) alloy nanowires have emerged as a novel class of fuel cell electrocatalysts for oxygen reduction reaction (ORR) due to their intrinsic high catalytic activity and durability, but preparing such electrocatalysts with clean surface via facile method is still a challenge. Herein, PtCu alloy with nanowire networks (NWNs) structure is obtained by a simple modified polyol method accompanied with a salt-mediated self-assembly process in a water/ethylene glycol (EG) mixing media. The formation mechanism of PtCu NWNs including the morphological evolution and the relevant experimental parameters has been investigated systematically. We propose that a micro-interface in H2O-EG media formed with the assistance of disodium dihydrogen pyrophosphate (Na2H2P2O7) and its unique nature of coordinating with Pt2+ or Cu2+ play critical roles in the formation of NWNs. When tested as ORR catalyst, the PtCuNWNs/C exhibits much higher activity and durability than that of PtNWNs/C and commercial Pt/C, even exceeding the target of DOE in 2020. The excellent performance of PtCuNWNs/C could be attributed to the unique structure of NWNs with 2.4 nm ultrathin wavy nanowires and plentiful surface defects and the modified electronic effect caused by alloying with Cu atoms.

Keywords: oxygen reduction reaction, self-assembly, surface defect, nanowire networks, PtCu nanoalloy

References(62)

1

Anahara, R.; Yokokawa, S.; Sakurai, M. Present status and future prospects for fuel cell power systems. Proc. IEEE 1993, 81, 399-408.

2

Wang, X. X.; Prabhakaran, V.; He, Y. H.; Shao, Y. Y.; Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 2019, 31, 1805126.

3

Li, B.; Wang, J.; Gao, X.; Qin, C. W.; Yang, D. J.; Lv, H.; Xiao, Q. F.; Zhang, C. M. High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Res. 2019, 12, 281-287.

4

Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808-1825.

5

Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.

6

Bao, M. J.; Amiinu, I. S.; Peng, T.; Li, W. Q.; Liu, S. J.; Wang, Z.; Pu, Z. H.; He, D. P.; Xiong, Y. L.; Mu, S. C. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 2018, 3, 940-945.

7

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, L.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.

8

Zhang, G. R.; Wöllner, S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl. Catal. B: Environ. 2018, 222, 26-34.

9

Zeng, Y. C.; Shao, Z. G.; Zhang, H. J.; Wang, Z. Q.; Hong, S. J.; Yu, H. M.; Yi, B. L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017, 34, 344-355.

10

Cheng, D. J.; Qiu, X. G.; Yu, H. Y. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying. Phys. Chem. Chem. Phys. 2014, 16, 20377-20381.

11

Wang, C.; Chi, M. F.; Li, D. G.; Van Der Vliet, D.; Wang, G. F.; Lin, Q. Y.; Mitchell, J. F.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal. 2011, 1, 1355-1359.

12

Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570-3576.

13

Li, C. Z.; Liu, T. Y.; He, T.; Ni, B.; Yuan, Q.; Wang, X. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale 2018, 10, 4670-4674.

14

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304-18307.

15

Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65-71.

16

Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634-7640.

17

Hong, J. W.; Kang, S. W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S. W. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410-2419.

18

Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y. Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

19

Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562-2572.

20

Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159-16167.

21

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.

22

Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2013, 52, 3465-3468.

23

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910-2915.

24

Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037-5043.

25

Song, P. P.; Cui, X. N.; Shao, Q.; Feng, Y. G.; Zhu, X.; Huang, X. Q. Networked Pt-Sn nanowires as efficient catalysts for alcohol electrooxidation. J. Mater. Chem. A 2017, 5, 24626-24630.

26

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142-1147.

27

Wang, P.; Zhang, Y. Y.; Shi, R.; Wang, Z. H. Trimetallic PtPdCu nanowires as an electrocatalyst for methanol and formic acid oxidation. New J. Chem. 2018, 42, 19083-19089.

28

Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499-510.

29

Yan, X. X.; Chen, Y. F.; Deng, S. H.; Yang, Y. F.; Huang, Z. N.; Ge, C. W.; Xu, L.; Sun, D. M.; Fu, G. T.; Tang, Y. W. In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chem. -Eur. J. 2017, 23, 16871-16876.

30

Ying, J.; Jiang, G. P.; Cano, Z. P.; Ma, Z.; Chen, Z. W. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2018, 236, 359-367.

31

Quinson, J.; Inaba, M.; Neumann, S.; Swane, A. A.; Bucher, J.; Simonsen, S. B.; Kuhn, L. T.; Kirkensgaard, J. J. K.; Jensen, K. M. Ø.; Oezaslan, M. et al. Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: Case study of the oxygen reduction reaction on Pt. ACS Catal. 2018, 8, 6627-6635.

32

Taufany, F.; Pan, C. J.; Chou, H. L.; Rick, J.; Chen, Y. S.; Liu, D. G.; Lee, J. F.; Tang, M. T.; Hwang, B. J. Relating structural aspects of bimetallic Pt3Cr1/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction. Chem. -Eur. J. 2011, 17, 10724-10735.

33

Li, W. Q.; Xiong, Y. L.; Wang, Z.; Bao, M.J.; Liu, J.; He, D. P.; Mu, S. C. Seed-mediated synthesis of large-diameter ternary TePtCo nanotubes for enhanced oxygen reduction reaction. Appl. Catal. B: Environ. 2018, 231, 277-282.

34

He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494-1497.

35

Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

36

Fang, D. H.; Zhang, H. J.; He, L.; Geng, J. T.; Song, W.; Sun, S. C.; Shao, Z. G.; Yi, B. L. Facile synthesis of nanoporous Pt-encapsulated Ir black as a bifunctional oxygen catalyst via modified polyol process at room temperature. ChemElectroChem, 2019, 6, 3633-3643.

37

Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321-6328.

38

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.

39

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

40

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

41

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

42

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

43

Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124-130.

44

Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674-9677.

45

Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. , Int. Ed. 2014, 126, 12730-12735.

46

Chaudhari, N. K.; Joo, J.; Kwon, H. B.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111-6140.

47

Xiao, M. L.; Li, S. T., Zhao, X.; Zhu, J. B.; Yin, M.; Liu, C. P.; Xing, W. Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 2014, 6, 2825-2831.

48

Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751-1756.

49

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

50

Chen, B.; Cheng, D. J.; Zhu, J. Q. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction. J. Power Sources 2014, 267, 380-387.

51

Yang, J. H.; Chen, X. J.; Yang, X. F.; Ying, J. Y. Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 8976-8981.

52

Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. , Int. Ed. 2005, 44, 2132-2135.

53

Zhang, L.; Choi, S. I.; Tao, J.; Peng, H. C.; Xie, S. F.; Zhu, Y. M.; Xie, Z. X.; Xia, Y. N. Pd-Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520-7529.

54

Ud Din, M. A.; Saleem, F.; Zulfiqar, M.; Wang, X. Synthesis of self-assembled PtPdAg nanostructures with a high catalytic activity for oxygen reduction reactions. Nanoscale 2018, 10, 17140-17147.

55

Zuo, Y. P.; Li, T. T.; Ren, H.; Zhu, G. L.; Han, K.; Zhuang, L.; Han, H. Y. Self-assembly of Pt-based truncated octahedral crystals into metal-frameworks towards enhanced electrocatalytic activity. J. Mater. Chem. A 2016, 4, 15169-15180.

56

Zhang, G.; Shao, Z. G.; Lu, W. T.; Xie, F.; Xiao, H.; Qin, X. P.; Yi, B. L. Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs. Appl. Catal. B: Environ. 2013, 132-133, 183-194.

57

Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485-5491.

58

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.

59

Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127, 12480-12481.

60

Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. , Int. Ed. 2011, 50, 422-426.

61

Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.

62

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.

File
12274_2019_2511_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2019
Revised: 09 August 2019
Accepted: 27 August 2019
Published: 10 September 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Major Research Project (No. 2018YFB0105601), the National Natural Science Foundation of China (No. 21576257), the Natural Science Foundation-Liaoning United Fund (No. U1508202), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB06050303).

Return