AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries

Liang Chen1,2( )Weiwei Yang2Jianguo Liu2Yong Zhou2
Hunan Collaborative Innovation Center of Environmental and Energy PhotocatalysisHunan Key Laboratory of Applied Environmental Photocatalysis, Changsha UniversityChangsha410022China
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied Sciences, Nanjing UniversityNanjing210093China
Show Author Information

Graphical Abstract

Abstract

Although lithium-sulfur batteries are one of promising rechargeable energy storage devices, their wide applications are impeded by the lithium polysulfides shuttle effect, low electronic conductivity of the cathode, and sluggish redox reaction kinetics of lithium polysulfides. In this work, reduced graphene oxide was decorated with CoSe2 hollow nanospheres to form an RGO-CoSe2 composite that was used as a host material to support S in the cathode. The RGO-CoSe2 composite has the following superiorities: (1) enhanced electronic conductivity, (2) accommodation of the volumetric change of cathode materials, (3) effective confinement of numerous lithium polysulfides species due to chemisorption, (4) expedition of the redox kinetics of lithium polysulfides. As expected, the RGO-CoSe2-based cathode exhibited the reversible specific capacity of 1, 044.7 mAh/g at 0.2C and 695.7 mAh/g at 2C, together with excellent cycling stability of 0.071% average capacity decay per cycle over 400 cycles at 1C.

Electronic Supplementary Material

Download File(s)
12274_2019_2508_MOESM1_ESM.pdf (2.2 MB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125-1134.

3

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.

4

Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.

5

Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li-S battery cells. Adv. Energy Mater. 2015, 5, 1500118.

6

Rao, M. M.; Geng, X. Y.; Li, X. P.; Hu, S. J.; Li, W. S. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J. Power Sources 2012, 212, 179-185.

7

Fan, L.; Zhuang, H. L.; Zhang, K. H.; Cooper, V. R.; Li, Q.; Lu, Y. Y. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600175.

8

Li, X. P.; Pan, Z. H.; Li, Z. H.; Wang, X. S.; Saravanakumar, B.; Zhong, Y. T.; Xing, L. D.; Xu, M. Q.; Guo, C. L.; Li, W. S. Coral-like reduced graphene oxide/tungsten sulfide hybrid as a cathode host of high performance lithium-sulfur battery. J. Power Sources 2019, 420, 22-28.

9

Li, Z.; Zhang, S. G.; Zhang, J. H.; Xu, M.; Tatara, R.; Dokko, K.; Watanabe, M. Three-dimensionally hierarchical Ni/Ni3S2/S cathode for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 38477-38485.

10

Scheers, J.; Fantini, S.; Johansson, P. A review of electrolytes for lithium-sulphur batteries. J. Power Sources 2014, 255, 204-218.

11

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.

12

Do, V.; Deepika; Kim, M. S.; Kim, M. S.; Lee, K. R.; Cho, W. I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 11431-11441.

13

Wang, S. Z.; Chen, H. Y.; Liao, J. X.; Sun, Q.; Zhao, F. P.; Luo, J.; Lin, X. T.; Niu, X. B.; Wu, M. Q.; Li, R. Y. et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 2019, 4, 755-762.

14

Xi, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.

15

Yeon, J. S.; Yun, S.; Park, J. M.; Park, H. S. Surface-modified sulfur nanorods immobilized on radially assembled open-porous graphene microspheres for lithium-sulfur batteries. ACS Nano 2019, 13, 5163-5171.

16

Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

17

Li, M.; Zhang, Y. N.; Wang, X. L.; Ahn, W.; Jiang, G. P.; Feng, K.; Lui, G.; Chen, Z. W. Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 2016, 26, 8408-8417.

18

Li, S. J.; Pasc, A.; Fierro, V.; Celzard, A. Hollow carbon spheres, synthesis and applications - a review. J. Mater. Chem. A 2016, 4, 12686-12713.

19

Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.

20

Liu, J.; Yang, T. Y.; Wang, D. W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.

21

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.

22

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710-12715.

23

He, B.; Li, W. C.; Zhang, Y.; Yu, X. F.; Zhang, B. S.; Li, F.; Lu, A. H. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 24194-24200.

24

Lu, J. H.; Lian, F.; Guan, L. L.; Zhang, Y. X.; Ding, F. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J. Mater. Chem. A 2019, 7, 991-997.

25

Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571-1579.

26

Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013.

27

Zhou, J.; Liu, X. J.; Zhou, J. B.; Zhao, H. Y.; Lin, N.; Zhu, L. Q.; Zhu, Y. C.; Wang, G. M.; Qian, Y. T. Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz. 2019, 4, 182-189.

28

Luo, R. J.; Yu, Q. H.; Lu, Y.; Zhang, M. J.; Peng, T.; Yan, H. L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 531-539.

29

Shi, J. L.; Tang, C.; Peng, H. J.; Zhu, L.; Cheng, X. B.; Huang, J. Q.; Zhu, W. C.; Zhang, Q. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries. Small 2015, 11, 5243-5252.

30

Xu, H. B.; Liu, Y.; Bai, Q. Y.; Wu, R. B. Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3558-3562.

31

Zhang, J.; Li, J. Y.; Wang, W. P.; Zhang, X. H.; Tan, X. H.; Chu, W. G.; Guo, Y. G. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1702839.

32

Chang, Z.; Dou, H.; Ding, B.; Wang, J.; Wang, Y.; Hao, X. D.; MacFarlane, D. R. Co3O4 nanoneedle arrays as a multifunctional "super-reservoir" electrode for long cycle life Li-S batteries. J. Mater. Chem. A 2017, 5, 250-257.

33

Ma, F.; Liang, J. S.; Wang, T. Y.; Chen, X.; Fan, Y. N.; Hultman, B.; Xie, H.; Han, J. T.; Wu, G.; Li, Q. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes. Nanoscale 2018, 10, 5634-5641.

34

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288-5294.

35

Xiao, D. J.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216-222.

36

Chen, L.; Yang, W. W.; Zhang, H.; Liu, J. G.; Zhou, Y. Self-templated preparation of hollow mesoporous TiN microspheres as sulfur host materials for advanced lithium-sulfur batteries. J. Mater. Sci. 2018, 53, 10363-10371.

37

Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031-6039.

38

Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 2961-2969.

39

Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239-248.

40

Guo, B. S.; Bandaru, S.; Dai, C. L.; Chen, H.; Zhang, Y. Q.; Xu, Q. J.; Bao, S. J.; Chen, M. Y.; Xu, M. W. Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 43707-43715.

41

Yu, X. Y.; Zhou, G. M.; Cui, Y. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer. ACS Appl. Mater. Interfaces 2019, 11, 3080-3086.

42

Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201.

43

Peng, Q.; Dong, Y. J.; Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem. 2003, 115, 3135-3138.

44

Liu, J. D.; Liang, J. J.; Wang, C. Y.; Ma, J. M. Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. J. Energy Chem. 2019, 33, 160-166.

45

Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868-4876.

46

Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

Nano Research
Pages 2743-2748
Cite this article:
Chen L, Yang W, Liu J, et al. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Research, 2019, 12(11): 2743-2748. https://doi.org/10.1007/s12274-019-2508-3
Topics:

773

Views

49

Crossref

N/A

Web of Science

51

Scopus

8

CSCD

Altmetrics

Received: 10 June 2019
Revised: 11 August 2019
Accepted: 27 August 2019
Published: 09 September 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return