AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy

Qiang Sun1Han Gao1Xiaomei Yao1,2,3Kun Zheng4Pingping Chen2Wei Lu2Jin Zou1,5( )
Materials EngineeringThe University of Queensland, St LuciaQLD4072Australia
State Key Laboratory for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of Sciences, 500 Yutian RoadShanghai200083China
University of Chinese Academy of SciencesNo.19A Yuquan RoadBeijing100049China
Institute of Microstructure and Properties of Advanced MaterialsBeijing University of TechnologyBeijing100124China
Centre for Microscopy and MicroanalysisThe University of Queensland, St LuciaQLD4072Australia
Show Author Information

Graphical Abstract

Abstract

In this study, we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy. Detailed structural characterizations suggest that wurtzite structured InAs nanosheets, with features of extensive {1120} surfaces, grown along the < 1102 > direction and adopted {0001} nanosheet/catalyst interfaces, are initiated from wurtzite structured [0001] nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts, and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature. Based on the facts that the nanosheets contain large low energy {1120} surfaces and {0001} nanosheet/catalyst interfaces, the growth of our nanosheets is a thermodynamically driven process. This study provides new insights into fabricating free-standing Ⅲ-Ⅴ nanosheets for their applications in future nanoscale devices.

Electronic Supplementary Material

Download File(s)
12274_2019_2504_MOESM1_ESM.pdf (1.1 MB)

References

1

Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B. Surface chemistry of prototypical bulk Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors and implications for chemical sensing. Chem. Rev. 2000, 100, 2505-2536.

2

Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323.

3

Sau, J. D.; Lutchyn, R. M.; Tewari, S.; Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 2010, 104, 040502.

4

Borg, M.; Schmid, H.; Gooth, J.; Rossell, M. D.; Cutaia, D.; Knoedler, M.; Bologna, N.; Wirths, S.; Moselund, K. E.; Riel, H. High-mobility GaSb nanostructures cointegrated with InAs on Si. ACS Nano 2017, 11, 2554-2560.

5

Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 2011, 11, 2424-2429.

6

Lu, H.; Schaff, W. J.; Hwang, J.; Wu, H.; Koley, G.; Eastman, L. F. Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy. Appl. Phys. Lett. 2001, 79, 1489-1491.

7

González, L.; García, J. M.; García, R.; Briones, F.; Martínez-Pastor, J.; Ballesteros, C. Influence of buffer-layer surface morphology on the self-organized growth of InAs on InP(001) nanostructures. Appl. Phys. Lett. 2000, 76, 1104-1106.

8

Kuo, C. P.; Vong, S. K.; Cohen, R. M.; Stringfellow, G. B. Effect of mismatch strain on band gap in Ⅲ-Vsemiconductors. J. Appl. Phys. 1985, 57, 5428-5432.

9

Jain, S. C.; Willander, M.; Maes, H. Stresses and strains in epilayers, stripes and quantum structures of Ⅲ-Vcompound semiconductors. Semicond. Sci. Technol. 1996, 11, 641.

10

Conesa-Boj, S.; Russo-Averchi, E.; Dalmau-Mallorqui, A.; Trevino, J.; Pecora, E. F.; Forestiere, C.; Handin, A.; Ek, M.; Zweifel, L.; Wallenberg, L. R. et al. Vertical "Ⅲ-Ⅴ" Ⅴ-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering. ACS Nano 2012, 6, 10982-10991.

11

Chi, C. Y.; Chang, C. C.; Hu, S.; Yeh, T. W.; Cronin, S. B.; Dapkus, P. D. Twin-free GaAs nanosheets by selective area growth: Implications for defect-free nanostructures. Nano Lett. 2013, 13, 2506-2515.

12

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.

13

Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y. N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular Ⅲ-Vnanowires. Small 2007, 3, 389-393.

14

Zhou, C.; Zhang, X. T.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. Self-assembly growth of In-rich InGaAs core-shell structured nanowires with remarkable near-infrared photoresponsivity. Nano Lett. 2017, 17, 7824-7830.

15

Guo, Y. N.; Xu, H. Y.; Auchterlonie, G. J.; Burgess, T.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Shu, H. B.; Chen, X. S. Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett. 2013, 13, 643-650.

16

Dick, K. A.; Deppert, K.; Larsson, M. W.; Mårtensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched "nanotrees" by controlled seeding of multiple branching events. Nat. Mater. 2004, 3, 380-384.

17

Zhang, Z.; Lu, Z. Y.; Chen, P. P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning Ⅴ/Ⅲ ratio in molecular beam epitaxy. Acta Mater. 2015, 92, 25-32.

18

Zhou, C.; Zheng, K.; Liao, Z. M.; Chen, P. P.; Lu, W.; Zou, J. Phase purification of GaAs nanowires by prolonging the growth duration in MBE. J. Mater. Chem. C 2017, 5, 5257-5262.

19

Zhou, C.; Zheng, K.; Lu, Z. Y.; Zhang, Z.; Liao, Z. M.; Chen, P. P.; Lu, W.; Zou, J. Quality control of GaAs nanowire structures by limiting As flux in molecular beam epitaxy. J. Phys. Chem. C 2015, 119, 20721-20727.

20

Krishnamachari, U.; Borgstrom, M.; Ohlsson, B. J.; Panev, N.; Samuelson, L.; Seifert, W.; Larsson, M. W.; Wallenberg, L. R. Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 2004, 85, 2077-2079.

21

Zhang, Z.; Chen, P. P.; Lu, W.; Zou, J. Defect-free thin InAs nanowires grown using molecular beam epitaxy. Nanoscale 2016, 8, 1401-1406.

22

Zhang, Z.; Zheng, K.; Lu, Z. Y.; Chen, P. P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured < 00 > InAs nanowires. Nano Lett. 2015, 15, 876-882.

23

Aagesen, M.; Johnson, E.; Sørensen, C. B.; Mariager, S. O.; Feidenhans'l, R.; Spiecker, E.; Nygård, J.; Lindelof, P. E. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nat Nanotechnol 2007, 2, 761-764.

24

Pan, D.; Wang, J. Y.; Zhang, W.; Zhu, L. J.; Su, X. J.; Fan, F. R.; Fu, Y. H.; Huang, S. Y.; Wei, D. H.; Zhang, L. J. et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale. Nano Lett. 2019, 19, 1632-1642.

25

Pan, D.; Fan, D. X.; Kang, N.; Zhi, J. H.; Yu, X. Z.; Xu, H. Q.; Zhao, J. H. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett. 2016, 16, 834-841.

26

de la Mata, M.; Leturcq, R.; Plissard, S. R.; Rolland, C.; Magén, C.; Arbiol, J.; Caroff, P. Twin-induced InSb nanosails: A convenient high mobility quantum system. Nano Lett. 2016, 16, 825-833.

27

Soo, M. T.; Zheng, K.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res. 2016, 9, 766-773.

28

Kelrich, A.; Sorias, O.; Calahorra, Y.; Kauffmann, Y.; Gladstone, R.; Cohen, S.; Orenstein, M.; Ritter, D. InP nanoflag growth from a nanowire template by in situ catalyst manipulation. Nano Lett. 2016, 16, 2837-2844.

29

Xu, H. Y.; Wang, Y.; Guo, Y. N.; Liao, Z. M.; Gao, Q.; Jiang, N.; Tan, H. H.; Jagadish, C.; Zou, J. High-density, defect-free, and taper-restrained epitaxial GaAs nanowires induced from annealed Au thin films. Cryst. Growth Des. 2012, 12, 2018-2022.

30

Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mater. Sci. Eng. : B 1993, 18, 237-259.

31

Dayeh, S. A.; Yu, E. T.; Wang, D. L. Excess indium and substrate effects on the growth of InAs nanowires. Small 2007, 3, 1683-1687.

32

Persson, A. I.; Fröberg, L. E.; Jeppesen, S.; Björk, M. T.; Samuelson, L. Surface diffusion effects on growth of nanowires by chemical beam epitaxy. J. Appl. Phys. 2007, 101, 034313.

33

Doh, Y. J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272-275.

34

Weng, Q. C.; An, Z. H.; Xiong, D. Y.; Zhang, B.; Chen, P. P.; Li, T. X.; Zhu, Z. Q.; Lu, W. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response. Appl. Phys. Lett. 2014, 105, 031114.

35

Cahn, J. W.; Hanneman, R. E. (111) surface tensions of Ⅲ-Vcompounds and their relationship to spontaneous bending of thin crystals. Surf. Sci. 1964, 1, 387-398.

36

Zhang, Z.; Lu, Z. Y.; Chen, P. P.; Xu, H. Y.; Guo, Y. N.; Liao, Z. M.; Shi, S. X.; Lu, W.; Zou, J. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 073109.

37

Dreyer, C. E.; Janotti, A.; Van de Walle, C. G. Absolute surface energies of polar and nonpolar planes of GaN. Phys Rev B 2014, 89, 081305.

38

Potts, H.; Morgan, N. P.; Tütüncüoglu, G.; Friedl, M.; Morral, A. F. i. Tuning growth direction of catalyst-free InAs (Sb) nanowires with indium droplets. Nanotechnology 2016, 28, 054001.

39

Tornberg, M.; Dick, K. A.; Lehmann, S. Branched InAs nanowire growth by droplet confinement. Appl. Phys. Lett. 2018, 113, 123104.

40

Wang, J.; Plissard, S. R.; Verheijen, M. A.; Feiner, L. F.; Cavalli, A.; Bakkers, E. P. A. M. Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett. 2013, 13, 3802-3806.

41

Novakovic, R.; Ricci, E.; Gnecco, F. Surface and transport properties of Au-In liquid alloys. Surf. Sci. 2006, 600, 5051-5061.

42

Schwarz, K. W.; Tersoff, J. Elementary processes in nanowire growth. Nano Lett 2011, 11, 316-320.

43

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of Ⅲ-Vzinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

44

Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res. 2014, 7, 1640-1649.

45

Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and Ⅴ/Ⅲ ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D: Appl. Phys. 2010, 43, 445402.

Nano Research
Pages 2718-2722
Cite this article:
Sun Q, Gao H, Yao X, et al. Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy. Nano Research, 2019, 12(11): 2718-2722. https://doi.org/10.1007/s12274-019-2504-7
Topics:

650

Views

6

Crossref

N/A

Web of Science

7

Scopus

2

CSCD

Altmetrics

Received: 25 June 2019
Revised: 02 August 2019
Accepted: 15 August 2019
Published: 27 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return