Journal Home > Volume 12 , Issue 11

The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance, in which thin metal film is one heart material as conductive electrodes. However, conventional metal films are typically polycrystalline with random domain orientations and various grain boundaries, which greatly degrade their mechanical, thermal and electrical properties. Hence, it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route. Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds. Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high (typical 500–1, 000 ℃ and out of the tolerant range of integrated circuit technology) due to the relative weak interfacial interactions. Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111) films on single-crystal hybrid graphene/Cu(111) substrate with CMOS-compatible annealing temperature of 150 ℃ only. The interfacial interaction between Pd and hybrid graphene/Cu(111) substrate is strong enough to enable the low-temperature epitaxy of Pd(111) films and weak enough to facilitate the easy film release from substrate. The obtained Pd(111) films possess superior properties to polycrystalline ones with ~ 0.25 eV higher work function and almost half sheet resistance. This technique is proved to be applicable to other metals, such as Au and Ag. As the single-crystal graphene/Cu(111) substrates are obtained from industrial Cu foils and accessible in meter scale, our work will promote the massive applications of large-area high-quality metal films in the development of next-generation electronic and optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate

Show Author's information Zhihong Zhang1,2Xiaozhi Xu1,3Ruixi Qiao1Junjiang Liu4Yuxia Feng1Zhibin Zhang1Peizhao Song1Muhong Wu1,5Lan Zhu6Xuelin Yang1Peng Gao1Lei Liu4Jie Xiong7Enge Wang1,2,5Kaihui Liu1( )
State Key Laboratory for Mesoscopic Physics, International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum MatterSchool of Physics, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
Physical Science LaboratoryHuairou National Comprehensive Science CentreBeijing101400China
School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510631China
Department of Materials Science and EngineeringCollege of Engineering, Peking UniversityBeijing100871China
Songshan Lake Materials Laboratory, Institute of PhysicsChinese Academy of SciencesGuangdong523808China
Peking Union Medical College HospitalBeijing100730China
State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China

Abstract

The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance, in which thin metal film is one heart material as conductive electrodes. However, conventional metal films are typically polycrystalline with random domain orientations and various grain boundaries, which greatly degrade their mechanical, thermal and electrical properties. Hence, it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route. Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds. Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high (typical 500–1, 000 ℃ and out of the tolerant range of integrated circuit technology) due to the relative weak interfacial interactions. Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111) films on single-crystal hybrid graphene/Cu(111) substrate with CMOS-compatible annealing temperature of 150 ℃ only. The interfacial interaction between Pd and hybrid graphene/Cu(111) substrate is strong enough to enable the low-temperature epitaxy of Pd(111) films and weak enough to facilitate the easy film release from substrate. The obtained Pd(111) films possess superior properties to polycrystalline ones with ~ 0.25 eV higher work function and almost half sheet resistance. This technique is proved to be applicable to other metals, such as Au and Ag. As the single-crystal graphene/Cu(111) substrates are obtained from industrial Cu foils and accessible in meter scale, our work will promote the massive applications of large-area high-quality metal films in the development of next-generation electronic and optoelectronic devices.

Keywords: single-crystal metal film, graphene/Cu(111) substrate, interfacial interactions, meter scale

References(40)

1

Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422-426.

2

Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009, 324, 349-352.

3

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

4

Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.

5

Mahenderkar, N. K.; Chen, Q. Z.; Liu, Y. C.; Duchild, A. R.; Hofheins, S.; Chason, E.; Switzer, J. A. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics. Science 2017, 355, 1203-1206.

6

Zhang, K.; Pitner, X. B.; Yang, R.; Nix, W. D.; Plummer, J. D.; Fan, J. A. Single-crystal metal growth on amorphous insulating substrates. Proc. Natl. Acad. Sci. USA 2018, 115, 685-689.

7

Grünbaum, E. Epitaxial growth of metal single-crystal films. Vacuum 1974, 24, 153-164.

8

Winau, D.; Koch, R.; Führmann, A.; Rieder, K. H. Film growth studies with intrinsic stress measurement: Polycrystalline and epitaxial Ag, Cu, and Au films on Mica(001). J. Appl. Phys. 1991, 70, 3081-3087.

9

Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K. I.; Mizuno, S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 2010, 4, 7407-7414.

10

Miller, D. L.; Keller, M. W.; Shaw, J. M.; Chiaramonti, A. N.; Keller, R. R. Epitaxial (111) films of Cu, Ni, and CuxNiy on α-Al2O3 (0001) for graphene growth by chemical vapor deposition. J. Appl. Phys. 2012, 112, 064317.

11

Hu, B. S.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; Ikeda, K. I.; Mizuno, S. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 2012, 50, 57-65.

12

Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J. S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M. et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett 2016, 16, 6931-6938.

13

Kelso, M. V.; Tubbesing, J. Z.; Chen, Q. Z.; Switzer, J. A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643). J. Am. Chem. Soc. 2018, 140, 15812-15819.

14

Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

15

Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 2011, 11, 2032-2037.

16

Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784-2791.

17

Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.

18

Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J. H. et al. Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory. Nano Lett. 2016, 16, 334-340.

19

Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572-4613.

20

Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340-343.

21

Kong, W.; Li, H. S.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y. F.; Lee, D.; Osadchy, T.; Molnar, R. J.; Gaskill, D. K. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 2018, 17, 999-1004.

22

Qi, Y.; Wang, Y. Y.; Pang, Z. Q.; Dou, Z. P.; Wei, T. B.; Gao, P.; Zhang, S. S.; Xu, X. Z.; Chang, Z. H.; Deng, B. et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc 2018, 140, 11935-11941.

23

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

24

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

25

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43-47.

26

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074-1080.

27

Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17, 318-322.

28

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-411.

29

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565-570.

30

Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.

31

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376-1382.

32

Kim, D. W.; Kim, S. J.; Choi, H. O.; Jung, H. T. Epitaxial crystallization behaviors of various metals on a graphene surface. Adv. Mater. Interfaces 2016, 3, 1500741.

33

Lu, Z. H.; Sun, X.; Washington, M. A.; Lu, T. M. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer. J. Phy. D: Appl. Phys. 2018, 51, 095301.

34

Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Wu, M. H.; Wang, J. H.; Liu, C.; Shang, N. Z.; Wang, J. X.; Gao, P.; Yu, D. P. et al. Identification of copper surface index by optical contrast. Adv. Mater. Interfaces 2018, 5, 1800377.

35

Wang, H. Z.; Leong, W. S.; Hu, F. T.; Ju, L. L.; Su, C.; Guo, Y. K.; Li, J.; Li, M.; Hu, A. M.; Kong, J. Low-temperature copper bonding strategy with graphene interlayer. ACS Nano 2018, 12, 2395-2402.

36

Matthews, J. W. Epitaxial Growth. Elsevier: Amsterdam, 1975.

37

Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv Mater 2018, 30, 1702944.

38

Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys Rev Lett 2008, 101, 026803.

39

Hölzl, J.; Schulte, F. K.; Wagner, H. Solid Surface Physics. Springer: Berlin, 1979.

DOI
40

Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lin, H. Q.; Ho, K. M.; Tringides, M. C. Metals on graphene: Interactions, growth morphology, and thermal stability. Crystals 2013, 3, 79-111.

File
12274_2019_2503_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2019
Revised: 09 August 2019
Accepted: 15 August 2019
Published: 28 August 2019
Issue date: November 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (Nos. 2016YFA0300903 and 2016YFA0300804), the National Natural Science Foundation of China (NSFC) (No. 11888101), the National Equipment Program of China (No. ZDYZ2015-1), Beijing Graphene Innovation Program (No. Z181100004818003), Beijing Municipal Science & Technology Commission (No. Z181100004218006), Bureau of Industry and Information Technology of Shenzhen (Graphene platform contract NO. 201901161512), and the Key R & D Program of Guangdong Province (No. 2019B010931001).

Return