Journal Home > Volume 12 , Issue 10

Although great advancements have been successfully achieved in ligand-assisted reprecipitation strategy (LARP) towards lead halide perovskite nanocrystals (NCs) synthesis, it still remains challenging to develop bright and stable iodide-based perovskite NC via facile LARP. Herein, strikingly bright MAPbI3 NCs with photoluminescence quantum yield (PLQY) as high as 79% are synthesized via replacing the raw material (MAI and PbI2) with MAPbI3 crystal powder during LARP procedure. It has been found that crystal powder derived MAPbI3 NCs are more iodide-rich compared with that based on raw material, which is favorable to passivate the surface trap state. Accordingly, femtosecond transient absorption spectroscopies and space charge limited current measurements have corroborated that the trap density is much less in crystal powder resulted MAPbI3 NCs. Further analyses indicate stronger solvation with reduced precursor colloid size has been observed in crystal powder derived precursor solution probably due to the formation of MAPbI3·DMF. This work has provided a facile but valid method to enhance the photoluminescence of perovskite NC via modulating the beginning precursor solution.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A facile method to fabricate high-quality perovskite nanocrystals based on single crystal powder

Show Author's information Jin-Feng Liao§Yi-Xin Chen§Jun-Hua WeiYa-Ting CaiXu-Dong WangYang-Fan XuDai-Bin Kuang( )
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University,Guangzhou,510275,China;

§ Jin-Feng Liao and Yi-Xin Chen contributed equally to this work.

Abstract

Although great advancements have been successfully achieved in ligand-assisted reprecipitation strategy (LARP) towards lead halide perovskite nanocrystals (NCs) synthesis, it still remains challenging to develop bright and stable iodide-based perovskite NC via facile LARP. Herein, strikingly bright MAPbI3 NCs with photoluminescence quantum yield (PLQY) as high as 79% are synthesized via replacing the raw material (MAI and PbI2) with MAPbI3 crystal powder during LARP procedure. It has been found that crystal powder derived MAPbI3 NCs are more iodide-rich compared with that based on raw material, which is favorable to passivate the surface trap state. Accordingly, femtosecond transient absorption spectroscopies and space charge limited current measurements have corroborated that the trap density is much less in crystal powder resulted MAPbI3 NCs. Further analyses indicate stronger solvation with reduced precursor colloid size has been observed in crystal powder derived precursor solution probably due to the formation of MAPbI3·DMF. This work has provided a facile but valid method to enhance the photoluminescence of perovskite NC via modulating the beginning precursor solution.

Keywords: MAPbI3, nanocrystal, perovskite, transient absorption, light emitting

References(50)

1

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

2

Fan, Q. Q.; Biesold-McGee, G. V.; Xu, Q. N.; Pan, S.; Peng, J.; Ma, J. Z.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed., DOI: 10.1002/anie.201904862.

3

Zhang, W. L.; Li, Z. C.; Zhang, C. Y.; Wang, B.; Zhang, Q. G.; Wan, Q.; Kong, L.; Li, L. Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461–1465.

4

Yang, S.; Niu, W. X.; Wang, A. L.; Fan, Z. X.; Chen, B.; Tan, C. L.; Lu, Q. P.; Zhang, H. Ultrathin two-dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem., Int. Ed. 2017, 129, 4316–4319.

5

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

6

National Renewable Energy Laboratory. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (accessed July 7, 2019).

7

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

8

Liao, J. F.; Xu, Y. F.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. CsPbBr3 nanocrystal/MO2 (M = Si, Ti, Sn) composites: Insight into charge-carrier dynamics and photoelectrochemical applications. ACS Appl. Mater. Interfaces 2018, 10, 42301–42309.

9

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

10

Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.

11

Kumawat, N. K.; Swarnkar, A.; Nag, A.; Kabra, D. Ligand engineering to improve the luminance efficiency of CsPbBr3 nanocrystal based light-emitting diodes. J. Phys. Chem. C 2018, 122, 13767–13773.

12

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc., in press, DOI: 10.1021/jacs.9b04482.

13

Huang, H.; Xue, Q.; Chen, B. K.; Xiong, Y.; Schneider, J.; Zhi, C. Y.; Zhong, H. Z.; Rogach, A. L. Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents. Angew. Chem., Int. Ed. 2017, 56, 9571–9576.

14

Protesescu, L.; Yakunin, S.; Nazarenko, O.; Dirin, D. N.; Kovalenko, M. V. Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 2018, 1, 1300–1308.

15

Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Espallargas, G. M.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

16

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

17

Protesescu, L.; Yakunin, S.; Kumar, S.; Bar, J.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Grotevent, M.; Shorubalko, I.; Bodnarchuk, M. I. et al. Dismantling the "red wall" of colloidal perovskites: Highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 2017, 11, 3119–3134.

18

Zhang, F.; Huang, S.; Wang, P.; Chen, X. M.; Zhao, S.L.; Dong, Y. P.; Zhong, H. Z. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 2017, 29, 3793–3799.

19

Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

20

Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2015, 2, 1500194.

21

Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garcia Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521–6527.

22

Vybornyi, O.; Yakunin, S.; Kovalenko, M. V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 2016, 8, 6278–6283.

23

Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

24

Levchuk, I.; Herre, P.; Brandl, M.; Osvet, A.; Hock, R.; Peukert, W.; Schweizer, P.; Spiecker, E.; Batentschuk, M.; Brabec, C. J. Ligand-assisted thickness tailoring of highly luminescent colloidal CH3NH3PbX3 (X = Br and I) perovskite nanoplatelets. Chem. Commun. 2017, 53, 244–247.

25

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

26

Yao, J. S.; Ge, J.; Han, B. N.; Wang, K. H.; Yao, H. B.; Yu, H. L.; Li, J. H.; Zhu, B. S.; Song, J. Z.; Chen, C. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 3626–3634.

27

Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Muller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.

28

Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.

29

Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.

30

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

31

Li, W. G.; Rao, H. S.; Chen, B. X.; Wang, X. D.; Kuang, D. B. A formamidinium-methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A 2017, 5, 19431–19438.

32

Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.

33

Wang, J. T. W.; Wang, Z. P.; Pathak, S.; Zhang, W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P. K.; Patel, J. B.; Yusof. H. A. M.; Vaynzof, Y. et al. Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 2016, 9, 2892–2901.

34

Leng, M. Y.; Yang, Y.; Chen, Z. W.; Gao, W. R.; Zhang, J.; Niu, G. D.; Li, D. B.; Song, H. S.; Zhang, J. B.; Jin, S. et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett. 2018, 18, 6076–6083.

35

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

36

Lee, S. M.; Moon, C. J.; Lim, H.; Lee, Y.; Choi, M. Y.; Bang, J. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: Splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J. Phys. Chem. C 2017, 121, 26054–26062.

37

Chung, H.; Jung, S. I.; Kim, H. J.; Cha, W.; Sim, E.; Kim, D.; Koh, W. K.; Kim, J. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X = Br and I) perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 4160–4164.

38

Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743.

39

Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 2019, 19, 1552–1559.

40

Zhou, L.; Liao, J. F.; Huang, Z. G.; Wang, X. D.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. All-inorganic lead-free Cs2PdX6 (X = Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 2018, 3, 2613–2619.

41

Zhu, Z. L.; Ma, J. N.; Wang, Z. L.; Mu, C.; Fan, Z. T.; Du, L. L.; Bai, Y.; Fan, L. Z.; Yan, H.; Phillips, D. L. et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 2014, 136, 3760–3763.

42

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.

43

Chen, J. S.; Židek, K.; Chábera. P.; Liu, D. Z.; Cheng, P. F.; Nuuttila, L.; Al-Marri, M. J.; Lehtivuori, H.; Messing, M. E.; Han, K. L. et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2017, 8, 2316–2321.

44

Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

45

Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411–16419.

46

Li, L.; Chen, Y. H.; Liu, Z. H.; Chen, Q.; Wang, X. D.; Zhou, H. P. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv. Mater. 2016, 28, 9862–9868.

47

Noel, N. K.; Congiu, M.; Ramadan, A. J.; Fearn, S.; McMeekin, D. P.; Patel, J. B.; Johnston, M. B.; Wenger, B.; Snaith, H. J. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 2017, 1, 328–343.

48

Sun, H.; Li, Z. C.; Kong, L.; Wang, B.; Zhang, C. Y.; Yuan, Q. C.; Huang, S. Q.; Liu, Y.; Li, L. Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2- and metal ions. Chem. Commun. 2018, 54, 9345–9348.

49

Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

50

Yu, D. J.; Cao, F.; Gao, Y. J.; Xiong, Y. H.; Zeng, H. B. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 Displays. Adv. Funct. Mater. 2018, 28, 1800248.

File
12274_2019_2501_MOESM1_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 June 2019
Revised: 11 August 2019
Accepted: 13 August 2019
Published: 27 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (No. 21875288), the GDUPS (2016) and Fundamental Research Funds for the Central Universities.

Return