Journal Home > Volume 12 , Issue 10

Carbon-sulfur composites have drawn increasing interest in various fields including electrocatalysis because of their unique structures. However, carbon-sulfur composite with tiny sulfur nanocrystals has still received little attention. Herein, hollow porous carbon sphere-sulfur composite (HPCS-S) which possesses excellent electrochemical performance towards H2O2 has been prepared for the first time via a simple silica template method. The 2–5 nm sulfur nanocrystals being restricted in the channel of the hollow porous carbon spheres are under a strong compressive stress, which was further confirmed by high-resolution transmission electron microscopy (HRTEM) and GPA. The HPCS-S nanocrystals show better conductivity than amorphous sulfur clusters because of the reduction of the steric hindrance which efficiently promotes the electron transportation. Consequently, the higher activity and selectivity towards the 2e- oxygen reduction reaction (ORR) to H2O2 in alkaline solution was obtained. The H2O2 selectivity rises from 20% to over 70% after the sulfur addition and the H2O2 production rate achieves 183.99 mmol·gcatalyst-1 with the Faradaic efficiency of 70%. Furthermore, performance enhancement mechanism was also investigated using the density functional theory (DFT) calculations. After the introducing of sulfur nanocrystals, the appearance of S–S bond greatly decreases the overpotential compared with S-doping, which results in significant enhancement of the electrocatalytic property. Consequently, the HPCS-S can be an efficient H2O2 production electrocatalyst in alkaline solution.

File
12274_2019_2496_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 May 2019
Revised: 10 July 2019
Accepted: 27 July 2019
Published: 15 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2018YFA0209102), the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050 and 61790581), and the Science and Technology Commission of Shanghai Municipality (No.16DZ2260600).

Return