Journal Home > Volume 12 , Issue 10

Here, we successfully developed nanostructured PtNi particles supported on nitrogen-doped carbon (NC), which were obtained by carbonization of metal-organic frameworks under different temperatures, forming the nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 and nano-PtNi/NC-1000 catalysts. For hydrosilylation of 1-octene, we found that the nano-PtNi/NC-1000 catalyst exhibits higher activity for anti-Markovnikov hydrosilylation of 1-octene than those of nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 catalysts. Experiments have verified that benefiting from obvious charge transfer from nano-PtNi particles to NC support carbonized at 1, 000 ℃, the nano-PtNi/NC-1000 catalyst achieved almost complete conversion and produce exclusive adduct for anti-Markovnikov hydrosilylation of 1-octene. Importantly, the nano-PtNi/NC-1000 catalyst exhibited good reusability for the hydrosilylation reaction. This work provides a new path to optimize electronic structure of catalysts by support modification to enhance electron transfer between metal active species and supports for highly catalytic performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene

Show Author's information Junfeng Wen1,2Yuanjun Chen2Shufang Ji2( )Jian Zhang2Dingsheng Wang2Yadong Li2( )
School of chemistry and chemical engineering,Yulin University,Yulin,719000,China;
Department of Chemistry,Tsinghua University,Beijing,100084,China;

Abstract

Here, we successfully developed nanostructured PtNi particles supported on nitrogen-doped carbon (NC), which were obtained by carbonization of metal-organic frameworks under different temperatures, forming the nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 and nano-PtNi/NC-1000 catalysts. For hydrosilylation of 1-octene, we found that the nano-PtNi/NC-1000 catalyst exhibits higher activity for anti-Markovnikov hydrosilylation of 1-octene than those of nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 catalysts. Experiments have verified that benefiting from obvious charge transfer from nano-PtNi particles to NC support carbonized at 1, 000 ℃, the nano-PtNi/NC-1000 catalyst achieved almost complete conversion and produce exclusive adduct for anti-Markovnikov hydrosilylation of 1-octene. Importantly, the nano-PtNi/NC-1000 catalyst exhibited good reusability for the hydrosilylation reaction. This work provides a new path to optimize electronic structure of catalysts by support modification to enhance electron transfer between metal active species and supports for highly catalytic performance.

Keywords: metal-organic frameworks, nanostructured PtNi particles, hydrosilylation, nitrogen-doped carbon

References(40)

1

Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567-570.

2

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407-7410.

3

Li, Q.; Ji, S. F.; Li, M. F.; Duan, X. F. Pt-Ni alloy catalysts for highly selective anti-Markovnikov alkene hydrosilylation. Sci. China Mater. 2018, 61, 1339-1344.

4

Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 2015, 137, 13244-13247.

5

Galeandro-Diamant, T.; Sayah, R.; Zanota, M. L.; Marrot, S.; Veyre, L.; Thieuleux, C.; Meille, V. Pt nanoparticles immobilized in mesostructured silica: A non-leaching catalyst for 1-octene hydrosilylation. Chem. Commun. 2017, 53, 2962-2965.

6

Glaser, P. B.; Tilley, T. D. Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for a new hydrosilylation mechanism. J. Am. Chem. Soc. 2003, 125, 13640-13641.

7

Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204-206.

8

Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part Ⅱ. The use of group viii metal catalysts. J. Am. Chem. Soc. 1957, 79, 974-979.

9

Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693-3703.

10

Roy, A. K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1-59.

11

Roy, A. K.; Taylor, R. B. The first alkene-platinum-silyl complexes: Lifting the hydrosilation mechanism shroud with long-lived precatalytic intermediates and true Pt catalysts. J. Am. Chem. Soc. 2002, 124, 9510-9524.

12

Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over siliaCat Pt(0). ACS Sustainable Chem. Eng. 2013, 1, 249-253.

13

Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Hydrosilylation of alkynes catalysed by platinum on titania. J. Organomet. Chem. 2011, 696, 368-372.

14

Marshall, S. T.; O'Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853-858.

15

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132-138.

16

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747-4765.

17

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564-569.

18

Gross, E.; Somorjai, G. A. The impact of electronic charge on catalytic reactivity and selectivity of metal-oxide supported metallic nanoparticles. Top. Catal. 2013, 56, 1049-1058.

19

Cui, X. J.; Surkus, A. E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326.

20

Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52-80.

21

Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614-4630.

22

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.

23

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468-5512.

24

He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217-7223.

25

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.

26

Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: Sintering- and leaching-resistant core-shell nanocatalysts. Chem. Commun. 2017, 53, 9490-9493.

27

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single- atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-1264.

28

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.

29

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

30

Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795-9798.

31

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944-1948.

32

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res., in press, DOI: 10.1007/s12274-019-2345-4.

33

Zhang, H.; Liu, X. M.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. Mof-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem. Commun. 2018, 54, 5268-5288.

34

Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472-3479.

35

Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544-2552.

36

Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganes, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res. 2018, 11, 3469-3479.

37

Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal- organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483-493.

38

Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854-11857.

39

Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water- soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.

40

Guo, Z.; Chen, Y. T.; Li, L. S.; Wang, X. M.; Haller, G. L.; Yang, Y. H. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave- assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J. Catal. 2010, 276, 314-326.

File
12274_2019_2490_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2019
Revised: 21 July 2019
Accepted: 23 July 2019
Published: 08 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Postdoctoral Program for Innovative Talents (No. BX20180160), the China Postdoctoral Science Foundation (No. 2018M640113), the National Natural Science Foundation of China (No. 21890383) and the Industrial Science and Technology Tackling Program of Shaanxi Province (No. 2016GY-245).

Return