Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Here, we successfully developed nanostructured PtNi particles supported on nitrogen-doped carbon (NC), which were obtained by carbonization of metal-organic frameworks under different temperatures, forming the nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 and nano-PtNi/NC-1000 catalysts. For hydrosilylation of 1-octene, we found that the nano-PtNi/NC-1000 catalyst exhibits higher activity for anti-Markovnikov hydrosilylation of 1-octene than those of nano-PtNi/NC-600, nano-PtNi/NC-800, nano-PtNi/NC-900 catalysts. Experiments have verified that benefiting from obvious charge transfer from nano-PtNi particles to NC support carbonized at 1, 000 ℃, the nano-PtNi/NC-1000 catalyst achieved almost complete conversion and produce exclusive adduct for anti-Markovnikov hydrosilylation of 1-octene. Importantly, the nano-PtNi/NC-1000 catalyst exhibited good reusability for the hydrosilylation reaction. This work provides a new path to optimize electronic structure of catalysts by support modification to enhance electron transfer between metal active species and supports for highly catalytic performance.
Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567-570.
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407-7410.
Li, Q.; Ji, S. F.; Li, M. F.; Duan, X. F. Pt-Ni alloy catalysts for highly selective anti-Markovnikov alkene hydrosilylation. Sci. China Mater. 2018, 61, 1339-1344.
Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 2015, 137, 13244-13247.
Galeandro-Diamant, T.; Sayah, R.; Zanota, M. L.; Marrot, S.; Veyre, L.; Thieuleux, C.; Meille, V. Pt nanoparticles immobilized in mesostructured silica: A non-leaching catalyst for 1-octene hydrosilylation. Chem. Commun. 2017, 53, 2962-2965.
Glaser, P. B.; Tilley, T. D. Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for a new hydrosilylation mechanism. J. Am. Chem. Soc. 2003, 125, 13640-13641.
Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204-206.
Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part Ⅱ. The use of group viii metal catalysts. J. Am. Chem. Soc. 1957, 79, 974-979.
Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693-3703.
Roy, A. K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1-59.
Roy, A. K.; Taylor, R. B. The first alkene-platinum-silyl complexes: Lifting the hydrosilation mechanism shroud with long-lived precatalytic intermediates and true Pt catalysts. J. Am. Chem. Soc. 2002, 124, 9510-9524.
Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over siliaCat Pt(0). ACS Sustainable Chem. Eng. 2013, 1, 249-253.
Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Hydrosilylation of alkynes catalysed by platinum on titania. J. Organomet. Chem. 2011, 696, 368-372.
Marshall, S. T.; O'Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853-858.
Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132-138.
Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747-4765.
Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564-569.
Gross, E.; Somorjai, G. A. The impact of electronic charge on catalytic reactivity and selectivity of metal-oxide supported metallic nanoparticles. Top. Catal. 2013, 56, 1049-1058.
Cui, X. J.; Surkus, A. E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326.
Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52-80.
Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614-4630.
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.
Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468-5512.
He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217-7223.
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.
Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: Sintering- and leaching-resistant core-shell nanocatalysts. Chem. Commun. 2017, 53, 9490-9493.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single- atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-1264.
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.
Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.
Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795-9798.
Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944-1948.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res., in press, DOI: 10.1007/s12274-019-2345-4.
Zhang, H.; Liu, X. M.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. Mof-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem. Commun. 2018, 54, 5268-5288.
Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472-3479.
Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544-2552.
Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganes, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res. 2018, 11, 3469-3479.
Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal- organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483-493.
Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854-11857.
Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water- soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.
Guo, Z.; Chen, Y. T.; Li, L. S.; Wang, X. M.; Haller, G. L.; Yang, Y. H. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave- assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J. Catal. 2010, 276, 314-326.