Journal Home > Volume 12 , Issue 10

Currently, prostate cancer is the most frequently diagnosed cancer in males and chemotherapy is often essential for treating advanced prostate cancer. However, common chemotherapies for prostate cancer suffer from serious adverse effects due to poor drug targeting ability and tissue penetration, even with the help of conventional drug delivery systems. Here, encouraged by recent studies showing possible drug retention and tissue penetration advantages of unconventional non-spherical nanoparticles over conventional spherical nanoparticles, we design and construct a novel non-spherical nanodisk drug delivery system for treating prostate cancer. In order to enhance tumor-targeting capability, these nanodisks are further modified with targeting peptide, Cys-Arg-Glu-Lys-Ala peptide with N-methylated Glu (CR(NMe)EKA), which recognizes extracellular matrix fibronectin and its complexes specifically expressed on the walls of tumor vessels and in tumor stroma. Compared with conventional nanospheres, the nanodisks achieve much higher drug accumulation at prostate tumor sites. When loaded with paclitaxel, the CR(NMe)EKA-modified nanodisks display superior antitumor efficacy to free paclitaxel, unmodified nanodisks and nanospheres. In summary, our study provides an attractive therapeutic strategy for targeted therapy against prostate cancer with simple preparation, high efficiency and low toxicity, and supplements a theoretical support for treatments realized by different shaped nanoplatforms. Our study also offers valuable data for understanding biological effects of non-spherical nanodisks and highlights the great potential of unconventional nanoparticles in biomedical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres

Show Author's information Luyao WangBingjie ZhouShiqi HuangMengke QuQing LinTao GongYuan HuangXun SunQin HeZhirong ZhangLing Zhang( )
Key Laboratory of Drug Targeting and Drug Delivery Systems,Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University,Chengdu,610041,China;

Abstract

Currently, prostate cancer is the most frequently diagnosed cancer in males and chemotherapy is often essential for treating advanced prostate cancer. However, common chemotherapies for prostate cancer suffer from serious adverse effects due to poor drug targeting ability and tissue penetration, even with the help of conventional drug delivery systems. Here, encouraged by recent studies showing possible drug retention and tissue penetration advantages of unconventional non-spherical nanoparticles over conventional spherical nanoparticles, we design and construct a novel non-spherical nanodisk drug delivery system for treating prostate cancer. In order to enhance tumor-targeting capability, these nanodisks are further modified with targeting peptide, Cys-Arg-Glu-Lys-Ala peptide with N-methylated Glu (CR(NMe)EKA), which recognizes extracellular matrix fibronectin and its complexes specifically expressed on the walls of tumor vessels and in tumor stroma. Compared with conventional nanospheres, the nanodisks achieve much higher drug accumulation at prostate tumor sites. When loaded with paclitaxel, the CR(NMe)EKA-modified nanodisks display superior antitumor efficacy to free paclitaxel, unmodified nanodisks and nanospheres. In summary, our study provides an attractive therapeutic strategy for targeted therapy against prostate cancer with simple preparation, high efficiency and low toxicity, and supplements a theoretical support for treatments realized by different shaped nanoplatforms. Our study also offers valuable data for understanding biological effects of non-spherical nanodisks and highlights the great potential of unconventional nanoparticles in biomedical applications.

Keywords: prostate cancer, Cys-Arg-Glu-Lys-Ala peptide with N-methylated Glu (CR(NMe)EKA), fibronectin, nanodisks, tumor-targeting

References(54)

1

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7-34.

2

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394-424.

3

Macintosh, C. A.; Stower, M.; Reid, N.; Maitland, N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res. 1998, 58, 23-28.

4

Ruijter, E. T.; Van De Kaa, C. A.; Schalken, J. A.; Debruyne, F. M.; Ruiter, D. J. Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J. Pathol. 1996, 180, 295-299.

DOI
5

Miller, G. J.; Cygan, J. M. Morphology of prostate cancer: The effects of multifocality on histological grade, tumor volume and capsule penetration. J. Urol. 1994, 152, 1709-1713.

6

Yang, H. W.; Hua, M. Y.; Liu, H. L.; Tsai, R. Y.; Chuang, C. K.; Chu, P. C.; Wu, P. Y.; Chang, Y. H.; Chuang, H. C.; Yu, K. J. et al. Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACS Nano 2012, 6, 1795-1805.

7

Widmark, A.; Klepp, O.; Solberg, A.; Damber, J. E.; Angelsen, A.; Fransson, P.; Lund, J. Å.; Tasdemir, I.; Hoyer, M.; Wiklund, F. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase Ⅲ trial. Lancet 2009, 373, 301-308.

8

Isshiki, S.; Akakura, K.; Komiya, A.; Suzuki, H.; Kamiya, N.; Ito, H. Chromogranin a concentration as a serum marker to predict prognosis after endocrine therapy for prostate cancer. J. Urol. 2002, 167, 512-515.

9

Tannock, I. F.; de Wit, R.; Berry, W. R.; Horti, J.; Pluzanska, A.; Chi, K. N.; Oudard, S.; Théodore, C.; James, N. D.; Turesson, I. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502-1512.

10

Nehoff, H.; Parayath, N. N.; Domanovitch, L.; Taurin, S.; Greish, K. Nanomedicine for drug targeting: Strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine 2014, 9, 2539-2555.

11

Chauhan, V. P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem., Int. Ed. 2011, 50, 11417-11420.

12

Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Derfus, A. M.; Simberg, D.; Harris, T. J.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009, 5, 694-700.

13

Pluen, A.; Boucher, Y.; Ramanujan, S.; McKee, T. D.; Gohongi, T.; di Tomaso, E.; Brown, E. B.; Izumi, Y.; Campbell, R. B.; Berk, D. A. et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 4628-4633.

14

Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990, 268, 235-237.

15

Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47-52.

16

Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249-255.

17

Gao, J.; Xie, C.; Zhang, M. F.; Wei, X. L.; Yan, Z. Q.; Ren, Y. C.; Ying, M.; Lu, W. Y. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery. Nanoscale 2016, 8, 7209-7216.

18

Zhang, W. P.; Sun, J.; Liu, Y.; Tao, M. Y.; Ai, X. Y.; Su, X. N.; Cai, C. F.; Tang, Y. L.; Feng, Z.; Yan, X. D. et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol. Pharm. 2014, 11, 3279-3290.

19

Yeh, C. Y.; Hsiao, J. K.; Wang, Y. P.; Lan, C. H.; Wu, H. C. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 2016, 99, 1-15.

20

Wang, L. Y.; Qu, M. K.; Huang, S. Q.; Fu, Y.; Yang, L. Q.; He, S. S.; Li, L.; Zhang, Z. R.; Lin, Q.; Zhang, L. A novel α-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale 2018, 10, 13673-13683.

21

Bae, Y. H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release. 2011, 153, 198-205.

22

Wong, K. M.; Horton, K. J.; Coveler, A. L.; Hingorani, S. R.; Harris, W. P. Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47.

23

Agemy, L.; Sugahara, K. N.; Kotamraju, V. R.; Gujraty, K.; Girard, O. M.; Kono, Y.; Mattrey, R. F.; Park, J. H.; Sailor, M. J.; Jimenez, A. I. et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood 2010, 116, 2847-2856.

24

Jiang, K. J.; Song, X.; Yang, L. Q.; Li, L.; Wan, Z. Y.; Sun, X.; Gong, T.; Lin, Q.; Zhang, Z. R. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J. Control. Release. 2018, 271, 21-30.

25

Udagawa, T.; Wood, M. Tumor-stromal cell interactions and opportunities for therapeutic intervention. Curr. Opin. Pharmacol. 2010, 10, 369-374.

26

Barbazán, J.; Alonso-Alconada, L.; Elkhatib, N.; Geraldo, S.; Gurchenkov, V.; Glentis, A.; van Niel, G.; Palmulli, R.; Fernández, B.; Viaño, P. et al. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits. Cancer Res. 2017, 77, 3431-3441.

27

Kaspar, M.; Zardi, L.; Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer 2006, 118, 1331-1339.

28

Nam, J. M.; Onodera, Y.; Bissell, M. J.; Park, C. C. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin α5β1 and fibronectin. Cancer Res. 2010, 70, 5238-5248.

29

Wang, C.; Wang, X.; Zhong, T.; Zhao, Y.; Zhang, W. Q.; Ren, W.; Huang, D.; Zhang, S.; Guo, Y.; Yao, X. et al. The antitumor activity of tumorhoming peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: In vitro and in vivo. Int. J. Nanomedicine 2015, 10, 2229-2248.

30

Zhang, X. M.; Zhang, Q.; Peng, Q.; Zhou, J.; Liao, L. F.; Sun, X.; Zhang, L.; Gong, T. Hepatitis B virus preS1-derived lipopeptide functionalized liposomes for targeting of hepatic cells. Biomaterials 2014, 35, 6130-6141.

31

Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016, 108, 44-56.

32

Wang, H.; Wang, X. Y.; Xie, C.; Zhang, M. F.; Ruan, H. T.; Wang, S. L.; Jiang, K.; Wang, F.; Zhan, C. Y.; Lu, W. Y. et al. Nanodisk-based gliomatargeted drug delivery enabled by a stable glycopeptide. J. Control. Release. 2018, 284, 26-38.

33

Yang, Y.; Zhou, Z.; He, S.; Fan, T. T.; Jin, Y.; Zhu, X.; Chen, C. H.; Zhang, Z. R.; Huang, Y. Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates. Biomaterials 2012, 33, 2260-2271.

34

Xu, Z. H.; Wang, Y. H.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 2014, 8, 3636-3645.

35

Li, N.; Li, N.; Yi, Q. Y.; Luo, K.; Guo, C. H.; Pan, D. Y.; Gu, Z. W. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 2014, 35, 9529-9545.

36

Roberts, W. G.; Ung, E.; Whalen, P.; Cooper, B.; Hulford, C.; Autry, C.; Richter, D.; Emerson, E.; Lin, J.; Kath, J. et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562, 271. Cancer Res. 2008, 68, 1935-1944.

37

Wang, Z. H.; Yu, Y.; Dai, W. B.; Lu, J. K.; Cui, J. R.; Wu, H. N.; Yuan, L.; Zhang, H.; Wang, X. Q.; Wang, J. C. et al. The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials 2012, 33, 8451-8460.

38

Müller, R. H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161-177.

39

Johansson, E.; Sandström, M. C.; Bergström, M.; Edwards, K. On the formation of discoidal versus threadlike micelles in dilute aqueous surfactant/lipid systems. Langmuir 2008, 24, 1731-1739.

40

Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release. 2012, 161, 175-187.

41

Zhang, B.; Shen, S.; Liao, Z. W.; Shi, W.; Wang, Y.; Zhao, J. J.; Hu, Y.; Yang, J. R.; Chen, J.; Mei, H. et al. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials 2014, 35, 4088-4098.

42

Kibria, G.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. The effect of liposomal size on the targeted delivery of doxorubicin to Integrin αvβ3-expressing tumor endothelial cells. Biomaterials 2013, 34, 5617-5627.

43

Ruan, S. B.; Zhang, L.; Chen, J. T.; Cao, T. W.; Yang, Y. T.; Liu, Y. Y.; He, Q.; Gao, F. T.; Gao, H. L. Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Adv. 2015, 5, 64303-64317.

44

Kibria, G.; Hatakeyama, H.; Sato, Y.; Harashima, H. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. Int. J. Pharm. 2016, 509, 178-187.

45

Deen, W. M.; Bohrer, M. P.; Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 1981, 27, 952-959.

46

Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 1999, 77, 542-552.

47

Bourboulia, D.; Stetler-Stevenson, W. G. Matrix metalloProteinases (MMPs) and tissue inhibitors of metalloProteinases (TIMPs): Positive and negative regulators intumor cell adhesion. Semin. Cancer Biol. 2010, 20, 161-168.

48

Moroz, A.; Delella, F. K.; Lacorte, L. M.; Deffune, E.; Felisbino, S. L. Fibronectin induces MMP2 expression in human prostate cancer cells. Biochem. Biophys. Res. Commun. 2013, 430, 1319-1321.

49

Urruticoechea, A.; Smith, I. E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 2005, 23, 7212-7220.

50

Joensuu, K.; Leidenius, M.; Kero, M.; Andersson, L. C.; Horwitz, K. B.; Heikkilä, P. ER, PR, HER2, Ki67 and CK5 in early and late relapsing breast cancer-reduced CK5 expression in metastases. Breast Cancer 2013, 7, 23-34.

51

Gao, Y. J.; Zhou, Y. X.; Zhao, L.; Zhang, C.; Li, Y. S.; Li, J. W.; Li, X. R.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015, 23, 127-135.

52

Li, W. H.; Yi, X. L.; Liu, X.; Zhang, Z. R.; Fu, Y.; Gong, T. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J. Control. Release. 2016, 225, 170-182.

53

Menna, P.; Salvatorelli, E.; Minotti, G. Cardiotoxicity of antitumor drugs. Chem. Res. Toxicol. 2008, 21, 978-989.

54

Saad, S. Y.; Najjar, T. A. O.; Alashari, M. Cardiotoxicity of doxorubicin/paclitaxel combination in rats: Effect of sequence and timing of administration. J. Biochem. Mol. Toxicol. 2004, 18, 78-86.

File
12274_2019_2488_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2019
Revised: 11 July 2019
Accepted: 20 July 2019
Published: 03 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81690261 and 81872824).

Return