AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Macroscopic Ag nanostructure array patterns with high-density hot-spots for reliable and ultra-sensitive SERS substrates

Taeksu LeeSoongeun KwonSanghee JungHyungjun LimJae-Jong Lee( )
Department of Nano Manufacturing Technology,Korea Institute of Machinery and Materials (KIMM),156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon,34103,Republic of Korea;
Show Author Information

Graphical Abstract

Abstract

Synthesis of metal nanostructures arrays with large amounts of small nano-gaps on a homogenous macroscale is of significant interest and importance in chemistry, biotechnology, physics, and nanotechnology because of their enhanced properties. However, the fabrication of uncovered nano-gaps with high-density and uniformity is rather difficult due to the complex and multiple synthetic steps. In this research, a facile and low-cost approach is demonstrated for the synthesis of high-density small nano-gaps (about 3.4 nm) between silver nanostructure array patterns (SNAPs) over a large area. Uniform nano-hole patterns were periodically generated over an entire substrate using nano-imprint lithography. Electrochemical reaction at the high over-potential produced multiple silver nanocrystals inside the nano-hole patterns, generating a high-density of small and uncovered nano-gaps. Finally, we fully demonstrate their application in the rapid detection of rhodamine 6G (R6G) molecules by surface-enhanced Raman scattering (SERS) spectroscopy with a very low detection limit (1 fM) as well as excellent signal uniformity (RSD < 8.0% ± 2.5%), indicating an extraordinary capability for single-molecule detection.

Electronic Supplementary Material

Download File(s)
12274_2019_2484_MOESM1_ESM.pdf (5.2 MB)

References

1

Lee, T.; Wi, J. S.; Oh, A.; Na, H. K.; Lee, J.; Lee, K.; Lee, T. G.; Haam, S. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale 2018, 10, 3680-3687.

2

Wu, K. Y.; Li, T.; Schmidt, M. S.; Rindzevicius, T.; Boisen, A.; Ndoni, S. Gold nanoparticles sliding on recyclable nanohoodoos-Engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1704818.

3

Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2018, 57, 2846-2850.

4

Si, S. R.; Liang, W. K.; Sun, Y. H.; Huang, J.; Ma, W. L.; Liang, Z. Q.; Bao, Q. L.; Jiang, L. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137-8145.

5

Kurouski, D.; Mattei, M.; Van Duyne, R. P. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 2015, 15, 7956-7962.

6

Park, K. D.; Muller, E. A.; Kravtsov, V.; Sass, P. M.; Dreyer, J.; Atkin, J. M.; Raschke, M. B. Variable-temperature tip-enhanced Raman spectroscopy of single-molecule fluctuations and dynamics. Nano Lett. 2016, 16, 479-487.

7

Lee, T.; Jung, S.; Kwon, S.; Kim, W.; Park, J.; Lim, H.; Lee, J. Formation of interstitial hot-spots using the reduced gap-size between plasmonic microbeads pattern for surface-enhanced Raman scattering analysis. Sensors 2019, 19, 1046.

8

Liu, Z.; Yang, Z. B; Peng, B.; Cao, C.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431-2439.

9

Thai, T.; Zheng, Y. H.; Ng, S. H.; Mudie, S.; Altissimo, M.; Bach, U. Self-assembly of vertically aligned gold nanorod arrays on patterned substrates. Angew. Chem., Int. Ed. 2012, 51, 8732-8735.

10

Li, P. H.; Li, Y.; Zhou, Z. K.; Tang, S. Y.; Yu, X. F.; Xiao, S.; Wu, Z. Z.; Xiao, Q. L.; Zhao, Y. T.; Wang, H. Y. et al. Evaporative self-assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays. Adv. Mater. 2016, 28, 2511-2517.

11

Shin, Y.; Song, J.; Kim, D.; Kang, T. Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control. Adv. Mater. 2015, 27, 4344-4350.

12

Lin, Q. Y.; Li, Z. Y.; Brown, K. A.; O'Brien, M. N.; Ross, M. B.; Zhou, Y.; Butun, S.; Chen, P. C.; Schatz, G. C.; Dravid, V. P. et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015, 15, 4699-4703.

13

Lim, H.; Ryu, J.; Kim, G.; Choi, K. B.; Lee, S.; Lee, J. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds. Lab Chip 2013, 13, 3188-3191.

14

Ahn, J.; Kwon, S.; Jung, S.; Lee, W. S.; Jeong, J.; Lim, H.; Shin, Y. B.; Lee, J. Fabrication of pyrrole-based electrochemical biosensor platform using nanoimprint lithography. Adv. Mater. Interfaces 2018, 5, 1701593.

15

Yoon, J. K.; Nam, S.; Shim, H. C.; Park, K.; Yoon, T.; Park, H. S.; Hyun, S. Highly-stable Li4Ti5O12 anodes obtained by atomic-layer-deposited Al2O3. Materials 2018, 11, 803.

16

Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304-10309.

17

Lee, J.; Zhang, Q. P.; Park, S.; Choe, A.; Fan, Z. Y.; Ko, H. Particle-film plasmons on periodic silver film over nanosphere (AgFON): A hybrid plasmonic nanoarchitecture for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 634-642.

18

Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871-4876.

19

Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering. Small 2012, 8, 2548-2554.

20

Li, X. M.; Bi, M. H.; Cui, L.; Zhou, Y. Z.; Du, X. W.; Qiao, S. Z.; Yang, J. 3D aluminum hybrid plasmonic nanostructures with large areas of dense hot spots and long-term stability. Adv. Funct. Mater. 2017, 27, 1605703.

21

Zhang, L.; Guan, C. R.; Wang, Y.; Liao, J. H. Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays. Nanoscale 2016, 8, 5928-5937.

22

Kim, Y.; Kim, G.; Lee, J. Fabrication of a conductive nanoscale electrode for functional devices using nanoimprint lithography with printable metallic nanoink. Microelectron. Eng. 2010, 87, 839-842.

23

Bang, D.; Chang, Y. W.; Park, J.; Lee, T.; Park, J.; Yeo, J. S.; Kim, E. K.; Yoo, K. H.; Huh, Y. M.; Haam, S. One-step electrochemical fabrication of vertically self-organized silver nanograss. J. Mater. Chem. A 2013, 1, 4851-4857.

24

Lee, T.; Bang, D.; Chang, Y. W.; Choi, Y.; Park, K. Y.; Oh, A.; Han, S.; Kim, S. H.; Lee, K.; Suh, J. S. et al. Cancer theranosis using mono-disperse, mesoporous gold nanoparticles obtained via a robust, high-yield synthetic methodology. RSC Adv. 2016, 6, 13554-13561.

25

Liu, Y. J.; Pedireddy, S.; Lee, Y. H.; Hegde, R. S.; Tjiu, W. W.; Cui, Y.; Ling, X. Y. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small 2014, 10, 4940-4950.

26

Park, J.; Bang, D.; Jang, K.; Kim, E.; Haam, S.; Na, S. Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nat. Commun. 2014, 5, 3456.

27

Sivasubramanian, R.; Sangaranarayanan, M. V. Electrodeposition of silver nanostructures: From polygons to dendrites. CrystEngComm 2013, 15, 2052-2056.

28

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794-13803.

Nano Research
Pages 2554-2558
Cite this article:
Lee T, Kwon S, Jung S, et al. Macroscopic Ag nanostructure array patterns with high-density hot-spots for reliable and ultra-sensitive SERS substrates. Nano Research, 2019, 12(10): 2554-2558. https://doi.org/10.1007/s12274-019-2484-7
Topics:

805

Views

44

Crossref

N/A

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 24 January 2019
Revised: 16 July 2019
Accepted: 18 July 2019
Published: 01 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return