Journal Home > Volume 12 , Issue 10

Oriented attachment of nanocrystals is an important route to constructing epitaxially-connected nanocrystal superlattices for various applications. During oriented attachment of semiconductor nanocrystals, neck can be formed between nanocrystals and it strongly influences the properties of the resulting superlattice. However, the neck formation mechanism is poorly understood. Here, we use in situ liquid cell transmission electron microscopy (TEM) to directly observe the initiation and growth of homoepitaxial necks between PbSe nanocrystals with atomic details. We find that neck initiation occurs slowly (~ 10 s) when two nanocrystals approach to each other within an edge-to-edge distance of 0.6 nm. During neck initiation, Pb and Se atoms defuse from other facets into the gap, forming "dynamic reversible" filaments. Once the filament (neck) width is larger than a critical size of 0.9 nm, it gradually (15 s) widens into a 3-nm-wide neck. The atomic structure of the neck is further obtained using ex situ aberration-corrected scanning TEM imaging. Neck initiation and growth mechanisms are elucidated with density functional theory calculations. Our direct unveiling of the atomic pathways of neck formation during oriented attachment shed light into the fabrication of nanocrystal superlattices with improved structural order and electronic properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals

Show Author's information Yu Wang1,2Xinxing Peng1,3Alex Abelson4Bing-Kai Zhang1Caroline Qian4Peter Ercius5Lin-Wang Wang1Matt Law4Haimei Zheng1,2( )
Materials Sciences Division,Lawrence Berkeley National Laboratory,Berkeley, California,94720,USA;
Department of Materials Science and Engineering,University of California,Berkeley, California,94720,USA;
State Key Lab of Physical Chemistry of Solid Surfaces,Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen,361005,China;
Department of Chemistry,University of California,Irvine, California,92697,USA;
National Center for Electron Microscopy, Molecular Foundry,Lawrence Berkeley National Laboratory,Berkeley, California,94720,USA;

Abstract

Oriented attachment of nanocrystals is an important route to constructing epitaxially-connected nanocrystal superlattices for various applications. During oriented attachment of semiconductor nanocrystals, neck can be formed between nanocrystals and it strongly influences the properties of the resulting superlattice. However, the neck formation mechanism is poorly understood. Here, we use in situ liquid cell transmission electron microscopy (TEM) to directly observe the initiation and growth of homoepitaxial necks between PbSe nanocrystals with atomic details. We find that neck initiation occurs slowly (~ 10 s) when two nanocrystals approach to each other within an edge-to-edge distance of 0.6 nm. During neck initiation, Pb and Se atoms defuse from other facets into the gap, forming "dynamic reversible" filaments. Once the filament (neck) width is larger than a critical size of 0.9 nm, it gradually (15 s) widens into a 3-nm-wide neck. The atomic structure of the neck is further obtained using ex situ aberration-corrected scanning TEM imaging. Neck initiation and growth mechanisms are elucidated with density functional theory calculations. Our direct unveiling of the atomic pathways of neck formation during oriented attachment shed light into the fabrication of nanocrystal superlattices with improved structural order and electronic properties.

Keywords: liquid cell transmission electron microscopy (TEM), PbSe nanocrystals, quantum dots, superlattices, necking, oriented attachment

References(39)

1

Zhang, X.; Shen, Z.; Liu, J.; Kerisit, S. N.; Bowden, M. E.; Sushko, M. L.; De Yoreo, J. J.; Rosso, K. M. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 2017, 8, 835.

2

Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014-1018.

3

Whitham, K.; Smilgies, D. M.; Hanrath, T. Entropic, enthalpic, and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment. Chem. Mater. 2018, 30, 54-63.

4

Sandeep, C. S. S.; Azpiroz, J. M.; Evers, W. H.; Boehme, S. C.; Moreels, I.; Kinge, S.; Siebbeles, L. D. A.; Infante, I.; Houtepen, A. J. Epitaxially connected PbSe quantum-dot films: Controlled neck formation and optoelectronic properties. ACS Nano 2014, 8, 11499-11511.

5

Lim, T. H.; McCarthy, D.; Hendy, S. C.; Stevens, K. J.; Brown, S. A.; Tilley, R. D. Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles. ACS Nano 2009, 3, 3809-3813.

6

Simon, P.; Bahrig, L.; Baburin, I. A.; Formanek, P.; Röder, F.; Sickmann, J.; Hickey, S. G.; Eychmuller, A.; Lichte, H.; Kniep, R. et al. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films. Adv. Mater. 2014, 26, 3042-3049.

7

Whitham, K.; Hanrath, T. Formation of epitaxially connected quantum dot solids: Nucleation and coherent phase transition. J. Phys. Chem. Lett. 2017, 8, 2623-2628.

8

Xu, Y. H.; Wang, X. X.; Zhang, W. L.; Lv, F.; Guo, S. J. Recent progress in two-dimensional inorganic quantum dots. Chem. Soc. Rev. 2018, 47, 586-625.

9

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389-458.

10

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220-11289.

11

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

12

Boneschanscher, M. P.; Evers, W. H.; Geuchies, J. J.; Altantzis, T.; Goris, B.; Rabouw, F. T.; van Rossum, S. A. P.; van der Zant, H. S. J.; Siebbeles, L. D. A.; van Tendeloo, G. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 2014, 344, 1377-1380.

13

Beugeling, W.; Kalesaki, E.; Delerue, C.; Niquet, Y. M.; Vanmaekelbergh, D.; Smith, C. M. Topological states in multi-orbital HgTe honeycomb lattices. Nat. Commun. 2015, 6, 6316.

14

Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557-563.

15

Evers, W. H.; Schins, J. M.; Aerts, M.; Kulkarni, A.; Capiod, P.; Berthe, M.; Grandidier, B.; Delerue, C.; van der Zant, H. S. J.; van Overbeek, C. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 2015, 6, 8195.

16

Geuchies, J. J.; van Overbeek, C.; Evers, W. H.; Goris, B.; de Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 2016, 15, 1248-1254.

17

Weidman, M. C.; Smilgies, D. M.; Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 2016, 15, 775-781.

18

Zaluzhnyy, I. A.; Kurta, R. P.; Andre, A.; Gorobtsov, O. Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A. V.; Sprung, M.; Schreiber, F. et al. Quantifying angular correlations between the atomic lattice and the superlattice of nanocrystals assembled with directional linking. Nano Lett. 2017, 17, 3511-3517.

19

Yalcin, A. O.; Fan, Z. C.; Goris, B.; Li, W. F.; Koster, R. S.; Fang, C. M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F. D.; Bals, S. et al. Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth. Nano Lett. 2014, 14, 3661-3667.

20

Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140-7147.

21

Evers, W. H.; Goris, B.; Bals, S.; Casavola, M.; de Graaf, J.; van Roij, J.; Dijkstra, M.; Vanmaekelbergh, D. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 2013, 13, 2317-2323.

22

van Overbeek, C.; Peters, J. L.; van Rossum, S. A. P.; Smits, M.; van Huis, M. A.; Vanmaekelbergh, D. Interfacial self-assembly and oriented attachment in the family of PbX (X = S, Se, Te) nanocrystals. J. Phys. Chem. C 2018, 122, 12464-12473.

23

Tan, S. F.; Chee, S. W.; Lin, G. H.; Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 2017, 50, 1303-1312.

24

Qi, K.; Wei, J. K.; Sun, M. H.; Huang, Q. M.; Li, X. M.; Xu, Z.; Wang, W. L.; Bai, X. D. Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem., Int. Ed. 2015, 127, 15437-15440.

25

Wu, S. Y.; Li, M. R.; Sun, Y. G. In situ synchrotron X-ray characterization shining light on the nucleation and growth kinetics of colloidal nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 8987-8995.

26

Kim, J.; Ou, Z. H.; Jones, M. R.; Song, X. H.; Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 2017, 8, 761.

27

de Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

28

Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 2015, 10, 997-1001.

29

Liao, H. G.; Zheng, H. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719-747.

30

Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem., Int. Ed. 2018, 57, 16827-16831.

31

Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; de Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.

32

Kim, B. H.; Yang, J.; Lee, D.; Choi, B. K.; Hyeon, T.; Park, J. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. Mater. 2018, 30, 1703316.

33

Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, eaaw5623.

34

Klokkenburg, M.; Houtepen, A. J.; Koole, R.; de Folter, J. W. J.; Erné, B. H.; van Faassen, E.; Vanmaekelbergh, D. Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. Nano Lett. 2007, 7, 2931-2936.

35

Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution em of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61-64.

36

Jin, B.; Sushko, M. L.; Liu, Z. M.; Jin, C. H.; Tang, R. K. In situ liquid cell tem reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett. 2018, 18, 6551-6556.

37

Anand, U.; Lu, J. Y.; Loh, D.; Aabdin, Z.; Mirsaidov, U. Hydration layer-mediated pairwise interaction of nanoparticles. Nano Lett. 2016, 16, 786-790.

38

Zhu, C.; Liang, S. X.; Song, E. H.; Zhou, Y. J.; Wang, W.; Shan, F.; Shi, Y. T.; Hao, C.; Yin, K. B.; Zhang, T. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 421.

39

Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536-18548.

Video
12274_2019_2483_MOESM2_ESM.mov
12274_2019_2483_MOESM3_ESM.mov
12274_2019_2483_MOESM4_ESM.mov
12274_2019_2483_MOESM5_ESM.mov
12274_2019_2483_MOESM6_ESM.mov
File
12274_2019_2483_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 May 2019
Revised: 11 July 2019
Accepted: 16 July 2019
Published: 29 July 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Contract No. DE-AC02- 05-CH11231 within the in-situ TEM (KC22ZH) program. Y. W., A. A., C. Q., and M. L. were supported by the UC Office of the President under the UC Laboratory Fees Research Program Collaborative Research and Training Award LFR-17-477148. X. P. acknowledges financial support from the China Scholarship Council. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Return