Journal Home > Volume 12 , Issue 10

The metallic lithium (Li) is considered as the most promising anode material for high-energy batteries. Nevertheless, the uncontrollable growth of Li dendrite and unstable electrolyte/electrode interface still hinder the development of Li-based battery. In this work, a novel strategy has been proposed to stabilize Li anode by in-situ polymerizing polypyrrole (PPy) layer on Ni foam (PPy@Ni foam) as an artificial protective layer. The PPy protective layer can effectively decrease the contact between Li metal and electrolyte during cycling. In addition, the morphology characterization shows that the PPy layer can help the even Li deposition underneath the layer, leading to a dendrite-free Li anode. As a result, when deposited 2 mAh·cm-2 Li metal, the PPy@Ni foam can keep stable Coulombic efficiency (99%) during nearly 250 cycles, much better than the pure Ni foam (100 cycles). Even in the case of the Li capacity of 10 mAh·cm-2, the stable cycling performance for 60 cycles can still be achieved. Furthermore, when assembled with LiFePO4 material as the cathode for a full cell, the PPy@Ni foam can keep high capacity retention of 85.5% at 500 cycles. In our work, we provide a simple and effective method to enhance the electrochemical performances of Li metal-based batteries, and reveal a new avenue to design three-dimensional (3D) metallic current collector for protecting the Li metal anode.

Video
12274_2019_2481_MOESM2_ESM.mp4
File
12274_2019_2481_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2018
Revised: 24 June 2019
Accepted: 13 July 2019
Published: 01 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 2127318, 21621091 and 21875195), the National Key Research and Development Program of China (No. 2017YFB0102000), and the Fundamental Research Funds for the Central Universities (No. 20720190040).

Return