Journal Home > Volume 12 , Issue 10

The urgent expectation of the next-generation energy storage devices for electric vehicles has driven researchers' attention to the lithium-oxygen (Li-O2) batteries due to the satisfied specific energy density. Herein, spatially-controlled Co3O4 nanoflake arrays with three-dimensional- networked morphology are adopted as flexible and self-standing oxygen cathodes in Li-O2 batteries. The spinel-phase Co3O4 nanoflakes were converted from two-dimension metal-organic frameworks with abundant available channels and large specific surface area. The open-structure nanoflake arrays possess sufficient Li2O2/cathode contact interface, great bifunctional catalytic performance and adequate Li2O2 accommodation, leading to the enhanced electrochemical performance of the Li-O2 batteries. As expected, the binder-free porous Co3O4/CT cathode delivers a high capacity of 6, 509 mAh·g-1 (200 mA·g-1) and enhanced stability over 100 cycles (limited by 1, 000 mAh·g-1). In addition, pouch-type Li-O2 batteries were successfully designed and cycled with Co3O4/CT cathode as oxygen electrodes, demonstrating its potential application for flexible electronics and wearable energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode

Show Author's information Hao Gong1,2Tao Wang1( )Hairong Xue1Xueyi Lu3Wei Xia1Li Song1Songtao Zhang4Jianping He1( )Renzhi Ma2( )
College of Materials Science and Technology,Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China;
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba,Ibaraki,305-0044,Japan;
School of Chemistry and Chemical Engineering,South China University of Technology, Wushan Road 381,Guangzhou,510641,China;
Testing Center,Yangzhou University,Yangzhou,225009,China;

Abstract

The urgent expectation of the next-generation energy storage devices for electric vehicles has driven researchers' attention to the lithium-oxygen (Li-O2) batteries due to the satisfied specific energy density. Herein, spatially-controlled Co3O4 nanoflake arrays with three-dimensional- networked morphology are adopted as flexible and self-standing oxygen cathodes in Li-O2 batteries. The spinel-phase Co3O4 nanoflakes were converted from two-dimension metal-organic frameworks with abundant available channels and large specific surface area. The open-structure nanoflake arrays possess sufficient Li2O2/cathode contact interface, great bifunctional catalytic performance and adequate Li2O2 accommodation, leading to the enhanced electrochemical performance of the Li-O2 batteries. As expected, the binder-free porous Co3O4/CT cathode delivers a high capacity of 6, 509 mAh·g-1 (200 mA·g-1) and enhanced stability over 100 cycles (limited by 1, 000 mAh·g-1). In addition, pouch-type Li-O2 batteries were successfully designed and cycled with Co3O4/CT cathode as oxygen electrodes, demonstrating its potential application for flexible electronics and wearable energy storage devices.

Keywords: two-dimension metal-organic frameworks, mesoporous Co3O4, flexible oxygen electrode, lithium-oxygen batteries

References(52)

1

Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144-2198.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

3

Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

4

Gong, H.; Wang, T.; Xue, H. R.; Fan, X. L.; Gao, B.; Zhang, H. B.; Shi, L.; He, J. P.; Ye, J. H. Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Mater. 2018, 13, 49-56.

5

Wu, S. C.; Yi, J.; Zhu, K.; Bai, S. Y.; Liu, Y.; Qiao, Y.; Ishida, M.; Zhou, H. S. A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere. Adv. Energy Mater. 2017, 7, 1601759.

6

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746-7786.

7

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

8

Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427-8435.

9

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation〞approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854-7863.

10

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

11

Padbury, R.; Zhang, X. W. Lithium-oxygen batteries〞limiting factors that affect performance. J. Power Sources 2011, 196, 4436-4444.

12

Gong, H.; Xue, H. R.; Wang, T.; Guo, H.; Fan, X. L.; Song, L.; Xia, W.; He, J. P. High-loading nickel cobaltate nanoparticles anchored on three- dimensional N-doped graphene as an efficient bifunctional catalyst for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 18060-18068.

13

Chen, L. Y.; Guo, X. W.; Han, J. H.; Liu, P.; Xu, X. D.; Hirata, A.; Chen, M. W. Nanoporous metal/oxide hybrid materials for rechargeable lithium- oxygen batteries. J. Mater. Chem. A 2015, 3, 3620-3626.

14

Lu, X. Y.; Yin, Y.; Zhang, L.; Huang, S. Z.; Xi, L. X.; Liu, L. X.; Oswald, S.; Schmidt, O. G. 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Mater. 2019, 16, 155-162.

15

Sun, C. W.; Li, F.; Ma, C.; Wang, Y.; Ren, Y. L.; Yang, W.; Ma, Z. H.; Li, J. Q.; Chen, Y. J.; Kim, Y. et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2014, 2, 7188-7196.

16

Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145-3152.

17

Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442-446.

18

Li, F. J.; Zhang, T.; Yamada, Y.; Yamada, A.; Zhou, H. S. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv. Energy Mater. 2013, 3, 532-538.

19

Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion- redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

20

McCloskey, B. D.; Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries. ACS Catal. 2017, 7, 772-778.

21

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650-2676.

22

Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121-10211.

23

Lu, X. Y.; Deng, J. W.; Si, W. P.; Sun, X. L.; Liu, X. H.; Liu, B.; Liu, L. F.; Oswald, S.; Baunack, S.; Grafe, H. J. et al. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes. Adv. Sci. 2015, 2, 1500113.

24

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

25

Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2015, 7, 4947-4954.

26

Huang, T.; Chen, Y.; Lee, J. A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 2017, 13, 17023.

27

Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

28

Jia, G.; Zhang, W.; Fan, G. Z.; Li, Z. S.; Fu, D. G.; Hao, W. C.; Yuan, C. W.; Zou, Z. G. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 13781-13785.

29

Tang, J.; Wu, S. C.; Wang, T.; Gong, H.; Zhang, H. B.; Alshehri, S. M.; Ahamad, T.; Zhou, H. S.; Yamauchi, Y. Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 2796-2804.

30

Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. W. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 2014, 26, 3258-3262.

31

Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 2014, 26, 1378-1386.

32

Zhang, J.; Wang, L. J.; Xu, L. L.; Ge, X. M.; Zhao, X.; Lai, M.; Liu, Z. L.; Chen, W. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 720-726.

33

Wu, F.; Zhang, X. X.; Zhao, T. L.; Chen, R. J.; Ye, Y. S.; Xie, M.; Li, L. Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 17620-17626.

34

Riaz, A.; Jung, K. N.; Chang, W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries. Chem. Commun. 2013, 49, 5984-5986.

35

Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081-6085.

36

Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

37

Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

38

Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500-9502.

39

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699-3705.

40

Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668-5672.

41

Varghese, B.; Teo, C. H.; Zhu, Y.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Tan, V. B. C.; Lim, C. T.; Sow, C. H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932-1939.

42

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187-3194.

43

Guan, Q.; Cheng, J. L.; Wang, B.; Ni, W.; Gu, G. F.; Li, X. D.; Huang, L.; Yang, G. C.; Nie, F. D. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7626-7632.

44

Wang, S. F.; Sha, Y. J.; Zhu, Y. L.; Xu, X. M.; Shao, Z. P. Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 16132-16141.

45

Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297-6303.

46

Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez- Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three- dimensional ordered superstructures. Nat. Chem. 2018, 10, 78-84.

47

Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087-4091.

48

Wu, S. C.; Qiao, Y.; Deng, H.; Zhou, H. S. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium-oxygen batteries with non-carbon cathodes. J. Mater. Chem. A 2018, 6, 9816-9822.

49

Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101-3105.

50

Zhang, T.; Matsuda, H.; Zhou, H. S. Gel-derived cation-π stacking films of carbon nanotube-graphene complexes as oxygen cathodes. ChemSusChem 2014, 7, 2845-2852.

51

Liu, L. L.; Wang, J.; Hou, Y. Y.; Chen, J.; Liu, H. K.; Wang, J. Z.; Wu, Y. P. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 2016, 12, 602-611.

52

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.

File
12274_2019_2480_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 May 2019
Revised: 11 June 2019
Accepted: 13 July 2019
Published: 03 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors thank for the financial support from the National Natural Science Foundation of China (Nos. 51602153 and 11575084), the Natural Science Foundation of Jiangsu Province (No. BK20160795), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0276), Zhejiang Provincial Natural Science Foundation of China under (No. LQ18B010005), the Fundamental Research Funds for the Central Universities (No. NE2018104), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). G. H. also thanks the China Scholarship Council for financial support.

Return