Journal Home > Volume 12 , Issue 10

A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently. A low input voltage is essential to ensure the heater's safe applications. However, the low voltage generally leads to low saturated temperature and heating rate and hence a low thermal efficiency. How to reduce the input voltage while maintaining a high electro-thermal efficiency is still a challenge. Herein, a highly electrical and thermal conductive film was constructed using a graphene-based composite which has an internal three-dimensional (3D) conductive network. In the 3D framework, cellulose nanocrystalline (CNC) phase with chiral liquid crystal manner presents in the form of aligned helix between the graphene oxide (GO) layers. Carbon nanodots (CDs) are assembled inside the composite as conductive nanofillers. Subsequent annealing and compression results in the formation of the assembled GO-CNC-CDs film. The carbonized CNC nanorods (CNR) with the helical alignment act as in-plane and through-plane connections of neighboring reduced GO (rGO) nanosheets, forming a conductive network in the composite film. The CDs with ultrafast electrons transfer rates provide additional electrons and phonons transport paths for the composite. As a result, the obtained graphene-based composite film (rGO-CNR-CDs) exhibited a high thermal conductivity of 1, 978.6 W·m-1·K-1 and electrical conductivity of 2, 053.4 S·cm-1, respectively. The composite film showed an outstanding electro-thermal heating efficiency with the saturated temperature of 315 ℃ and maximum heating rate of 44.9 ℃·s-1 at a very low input voltage of 10 V. The freestanding graphene composite film with the delicate nanostructure design has a great potential to be integrated into electro-thermal devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency

Show Author's information Xin Meng1Tianxing Chen1Yao Li1Siyuan Liu1Hui Pan1Yuning Ma2( )Zhixin Chen3Yanping Zhang4Shenmin Zhu1( )
State Key Laboratory of Metal Matrix Composites,School of Material Science and Engineering, Shanghai Jiao Tong University,Shanghai,200240,China;
School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai,200240,China;
School of Mechanical, Materials&Mechatronics Engineering,University of Wollongong,Wollongong, NSW,2522,Australia;
Shanghai LEVSON Group Co.,Ltd.,Shanghai,200444,China;

Abstract

A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently. A low input voltage is essential to ensure the heater's safe applications. However, the low voltage generally leads to low saturated temperature and heating rate and hence a low thermal efficiency. How to reduce the input voltage while maintaining a high electro-thermal efficiency is still a challenge. Herein, a highly electrical and thermal conductive film was constructed using a graphene-based composite which has an internal three-dimensional (3D) conductive network. In the 3D framework, cellulose nanocrystalline (CNC) phase with chiral liquid crystal manner presents in the form of aligned helix between the graphene oxide (GO) layers. Carbon nanodots (CDs) are assembled inside the composite as conductive nanofillers. Subsequent annealing and compression results in the formation of the assembled GO-CNC-CDs film. The carbonized CNC nanorods (CNR) with the helical alignment act as in-plane and through-plane connections of neighboring reduced GO (rGO) nanosheets, forming a conductive network in the composite film. The CDs with ultrafast electrons transfer rates provide additional electrons and phonons transport paths for the composite. As a result, the obtained graphene-based composite film (rGO-CNR-CDs) exhibited a high thermal conductivity of 1, 978.6 W·m-1·K-1 and electrical conductivity of 2, 053.4 S·cm-1, respectively. The composite film showed an outstanding electro-thermal heating efficiency with the saturated temperature of 315 ℃ and maximum heating rate of 44.9 ℃·s-1 at a very low input voltage of 10 V. The freestanding graphene composite film with the delicate nanostructure design has a great potential to be integrated into electro-thermal devices.

Keywords: graphene film, carbon nanodots, self-assembly, electro-thermal heater, three-dimensional (3D) conductive framework

References(69)

1

Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186-3192.

2

Bae, J. J.; Lim, S. C.; Han, G. H.; Jo, Y. W.; Doung, D. L.; Kim, E. S.; Chae, S. J.; Huy, T. Q.; van Luan, N.; Lee, Y. H. Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 2012, 22, 4819-4826.

3

Liu, Z.; Li, Z.; Xu, Z.; Xia, Z. X.; Hu, X. Z.; Kou, L.; Peng, L.; Wei, Y. Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater. 2014, 26, 6786-6795.

4

Karim, N.; Zhang, M. L. H.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K. S. Graphene-based surface heater for de-icing applications. RSC Adv. 2018, 8, 16815-16823.

5

Guo, Y.; Dun, C. C.; Xu, J. W.; Mu, J. K.; Li, P. Y.; Gu, L. W.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 2017, 13, 1702645.

6

Wang, R.; Xu, Z.; Zhuang, J. H.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y. J.; Gao, W. W.; Gao, C. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv. Electron. Mater. 2017, 3, 1600425.

7

Jiang, J. W.; Wang, J. S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: Electron-phonon interaction effect. J. Appl. Phys. 2011, 110, 124319.

8

Janas, D.; Koziol, K. K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 2014, 6, 3037-3045.

9

Huang, K.; Liu, J. X.; Tan, L. F.; Zuo, J. L.; Fu, L. Ultrahigh temperature graphene molecular heater. Adv. Mater. Interfaces 2018, 5, 1701299.

10

Zhang, T. Y.; Zhao, H. M.; Wang, D. Y.; Wang, Q.; Pang, Y.; Deng, N. Q.; Cao, H. W.; Yang, Y.; Ren, T. L. A super flexible and custom-shaped graphene heater. Nanoscale 2017, 9, 14357-14363.

11

Matsumoto, M.; Mizutani, Y.; Aoki, M. Dehydration/hydration behavior of layered double hydroxide for chemical heat storage. Bull. Chem. Soc. Jpn. 2018, 91, 1205-1209.

12

Kasaeian, A.; Nouri, G.; Ranjbaran, P.; Wen, D. S. Solar collectors and photovoltaics as combined heat and power systems: A critical review. Energy Convers. Manage. 2018, 156, 688-705.

13

Zhang, S. D.; Wang, Z. Y. Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications. Renew. Sust. Energy Rev. 2018, 82, 2319-2331.

14

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.

15

Gupta, R.; Rao, K. D. M.; Kiruthika, S.; Kulkarni, G. U. Visibly transparent heaters. ACS Appl. Mater. Interfaces 2016, 8, 12559-12575.

16

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

17

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.

18

Wen, Y. Y.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 2017, 29, 1702831.

19

Cui, L. F.; Wang, X. P.; Chen, N.; Ji, B. X.; Qu, L. T. Trash to treasure: Converting plastic waste into a useful graphene foil. Nanoscale 2017, 9, 9089-9094.

20

Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

21

Guo, Y.; Dun, C. C.; Xu, J. W.; Mu, J. K.; Li, P. Y.; Gu, L. W.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 2017, 13, 1702645.

22

Ding, J. H.; Zhao, H. R.; Wang, Q. L.; Dou, H. M.; Chen, H.; Yu, H. B. An ultrahigh thermal conductive graphene flexible paper. Nanoscale 2017, 9, 16871-16878.

23

Huang, Y. L.; Gong, Q. M.; Zhang, Q.; Shao, Y.; Wang, J. J.; Jiang, Y. Q.; Zhao, M.; Zhuang, D. M.; Liang, J. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures. Nanoscale 2017, 9, 2340-2347.

24

Teng, C.; Xie, D.; Wang, J. F.; Yang, Z.; Ren, G. Y.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.

25

Wang, Z.; Mao, B. Y.; Wang, Q. L.; Yu, J.; Dai, J. X.; Song, R. G.; Pu, Z. H.; He, D. P.; Wu, Z.; Mu, S. C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 2018, 14, 1704332.

26

Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018-2027.

27

Jiang, L. L.; Sheng, L. Z.; Long, C. L.; Wei, T.; Fan, Z. J. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 2015, 5, 1500771.

28

Varshney, V.; Patnaik, S. S.; Roy, A. K.; Froudakis, G.; Farmer, B. L. Modeling of thermal transport in pillared-graphene architectures. ACS Nano 2010, 4, 1153-1161.

29

Xu, L. Q.; Wei, N.; Zheng, Y. P.; Fan, Z. Y.; Wang, H. Q.; Zheng, J. C. Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties. J. Mater. Chem. 2012, 22, 1435-1444.

30

Chen, J.; Walther, J. H.; Koumoutsakos, P. Covalently bonded graphene-carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater. 2015, 25, 7539-7545.

31

Pan, T. W.; Kuo, W. S.; Tai, N. H. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films. Compos. Sci. Technol. 2017, 151, 44-51.

32

Lu, H. F.; Zhang, J.; Luo, J.; Gong, W. B.; Li, C. W.; Li, Q. L.; Zhang, K.; Hu, M.; Yao, Y. G. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A 2017, 102, 1-8.

33

Meng, X.; Pan, H.; Zhu, C. L.; Chen, Z. X.; Lu, T.; Xu, D.; Li, Y.; Zhu, S. M. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions. ACS Appl. Mater. Interfaces 2018, 10, 22611-22622.

34

Pan, H.; Zhu, C.; Lu, T.; Lin, J.; Ma, J.; Zhang, D.; Zhu, S. A chiral smectic structure assembled from nanosheets and nanorods. Chem. Commun. 2017, 53, 1868-1871.

35

Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473-6475.

36

Miao, P.; Han, K.; Tang, Y. G.; Wang, B. D.; Lin, T.; Cheng, W. B. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586-1595.

37

Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776-780.

38

Essner, J. B.; Baker, G. A. The emerging roles of carbon dots in solar photovoltaics: A critical review. Environ. Sci. : Nano 2017, 4, 1216-1263.

39

Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111-6123.

40

Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620-1636.

41

Zhang, Z. P.; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869-8890.

42

Yu, P.; Wen, X. M.; Toh, Y. R.; Lee, Y. C.; Huang, K. Y.; Huang, S. J.; Shrestha, S.; Conibeer, G.; Tang, J. Efficient electron transfer in carbon nanodot-graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 2894-2901.

43

Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3452-3454.

44

Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074-9082.

45

Li, H. L.; Dai, S. C.; Miao, J.; Wu, X.; Chandrasekharan, N.; Qiu, H. X.; Yang, J. H. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy. Carbon 2018, 126, 319-327.

46

Song, N. J.; Chen, C. M.; Lu, C. X.; Liu, Z.; Kong, Q. Q.; Cai, R. Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2014, 2, 16563-16568.

47

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

48

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751-758.

49

Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong, W. Z.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659-667.

50

Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521-4526.

51

Ding, J. H.; Rahman, O. U.; Zhao, H. R.; Peng, W. J.; Dou, H. M.; Chen, H.; Yu, H. B. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 2017, 28, 39LT01.

52

Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. H.; Koo, C. M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494-500.

53

Chen, X. J.; Deng, X. M.; Kim, N. Y.; Wang, Y.; Huang, Y.; Peng, L.; Huang, M.; Zhang, X.; Chen, X.; Luo, D. et al. Graphitization of graphene oxide films under pressure. Carbon 2018, 132, 294-303.

54

Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G. M.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24, 4222-4228.

55

Zhou, E. Z.; Xi, J. B.; Guo, Y.; Liu, Y. J.; Xu, Z.; Peng, L.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316-322.

56

Kim, H. Y.; Lee, J. W.; Oh, H. M.; Baeg, K. J.; Jung, S.; Yang, H. S.; Lee, W.; Hwang, J. Y.; Kim, K. S.; Jeong, S. Y. et al. Ultrafast heating for intrinsic properties of atomically thin two-dimensional materials on plastic substrates. ACS Appl. Mater. Interfaces 2016, 8, 31222-31230.

57

Li, C.; Xu, Y. T.; Zhao, B.; Jiang, L.; Chen, S. G.; Xu, J. B.; Fu, X. Z.; Sun, R.; Wong, C. P. Flexible graphene electrothermal films made from electrochemically exfoliated graphite. J. Mater. Sci. 2016, 51, 1043-1051.

58

Zhang, T. Y.; Zhao, H. M.; Yang, Z.; Wang, Q.; Wang, D. Y.; Deng, N. Q.; Yang, Y.; Ren, T. L. Improved electrothermal performance of custom-shaped micro heater based on anisotropic laser-reduced graphene oxide. Appl. Phys. Lett. 2016, 109, 151905.

59

Lin, S. Y.; Zhang, T. Y.; Lu, Q.; Wang, D. Y.; Yang, Y.; Wu, X. M.; Ren, T. L. High-performance graphene-based flexible heater for wearable applications. RSC Adv. 2017, 7, 27001-27006.

60

Zhang, Q. Q.; Yu, Y. K.; Yang, K. C.; Zhang, B. Q.; Zhao, K. R.; Xiong, G. P.; Zhang, X. Y. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers. Carbon 2017, 124, 296-307.

61

Zhang, Z. C.; Sun, J. J.; Lai, C.; Wang, Q.; Hu, C. G. High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 2017, 120, 411-418.

62

Zhou, R.; Li, P. C.; Fan, Z.; Du, D. H.; Ouyang, J. Y. Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J. Mater. Chem. C 2017, 5, 1544-1551.

63

Wang, D.; Li, D. W.; Zhao, M.; Xu, Y.; Wei, Q. F. Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl. Surf. Sci. 2018, 454, 218-226.

64

Menéndez, J. A.; Phillips, J.; Xia, B.; Radovic, L. R. On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir 1996, 12, 4404-4410.

65

Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499-3503.

66

Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870-873.

67

Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C. et al. Wet chemical synthesis of graphene. Adv. Mater. 2013, 25, 3583-3587.

68

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

69

Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6, 4676-4682.

File
12274_2019_2476_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2019
Revised: 05 June 2019
Accepted: 12 July 2019
Published: 08 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2016YFA0202900 and 2016YFC1402400), National Natural Science Foundation of China (No. 51672173), Shanghai Science and Technology committee (No. 17JC1400700 and 18520744700), Science and Technology Planning Project of Guangdong Province (No. 2016A010103018). The authors gratefully acknowledge the Shanghai Synchrotron Radiation Facility (SSRF) and Shanghai LEVSON Group Co., Ltd. for the measurements.

Return