Journal Home > Volume 12 , Issue 10

Introducing defects into graphene has been widely utilized to realize the negative magnetoresistance (MR) effect in graphene. However, the reported graphene negative MR exhibits only ~ 10% under 10 T at room temperature to date, which extremely limits the resolution of future spintronics devices. Moreover, intentional defect introduction can also cause unintentional degradation in graphene's intrinsic properties. In this paper, we report a magnetic logic inverter based on a crossed structure of defect-free graphene, resulting in a substantial gain of 4.81 mV/T while exhibiting room temperature operation. This crossed structure of graphene shows large unsaturated room temperature negative MR with an enhancement of up to 1, 000% at 9 T. A transition behavior between negative and positive MR is observed in this crossed structure and the transition temperature can be tuned by a ratio of the conductivity between in-plane and out-of-plane transport. Our results open an intriguing path for future two-dimensional spintronics device applications.


menu
Abstract
Full text
Outline
About this article

Magnetic logic inverter from crossed structures of defect-free graphene with large unsaturated room temperature negative magnetoresistance

Show Author's information Chao Feng1<Junxiang Xiang1<Ping Liu1<Xiangqi Wang2Jianlin Wang3Guojing Hu1Meng Huang1Zhi Wang1Zengming Zhang4Yuan Liu5Yalin Lu1,3( )Bin Xiang1( )
Hefei National Research Center for Physical Sciences at the Microscale,Department of Materials Science&Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China,Hefei,230026,China;
Department of Physics,University of Science and Technology of China,Hefei,230026,China;
National Synchrotron Radiation Laboratory,CAS Center for Excellence in Nanoscience, University of Science and Technology of China,Hefei,230026,China;
The Centre for Physical Experiments,University of Science and Technology of China,Hefei,230026,China;
School of Physics and Electronics,Hunan University,Changsha,410082,China;

§ Chao Feng, Junxiang Xiang, and Ping Liu contributed equally to this work.

Abstract

Introducing defects into graphene has been widely utilized to realize the negative magnetoresistance (MR) effect in graphene. However, the reported graphene negative MR exhibits only ~ 10% under 10 T at room temperature to date, which extremely limits the resolution of future spintronics devices. Moreover, intentional defect introduction can also cause unintentional degradation in graphene's intrinsic properties. In this paper, we report a magnetic logic inverter based on a crossed structure of defect-free graphene, resulting in a substantial gain of 4.81 mV/T while exhibiting room temperature operation. This crossed structure of graphene shows large unsaturated room temperature negative MR with an enhancement of up to 1, 000% at 9 T. A transition behavior between negative and positive MR is observed in this crossed structure and the transition temperature can be tuned by a ratio of the conductivity between in-plane and out-of-plane transport. Our results open an intriguing path for future two-dimensional spintronics device applications.

Keywords: negative magnetoresistance, magnetic logic inverter, defect-free graphene

References(34)

1

Fernández-Rossier, J.; Tejedor, C. Spin degree of freedom in two dimensional exciton condensates. Phys. Rev. Lett. 1997, 78, 4809-4812.

2

Drew, A. J.; Hoppler, J.; Schulz, L.; Pratt, F. L.; Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W. P.; Suter, A.; Morley, N. A. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nat. Mater. 2009, 8, 109-114.

3

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spinbased electronics vision for the future. Science 2001, 294, 1488-1495.

4

Sakai, S.; Majumdar, S.; Popov, Z. I.; Avramov, P. V.; Entani, S.; Hasegawa, Y.; Yamada, Y.; Huhtinen, H.; Naramoto, H.; Sorokin, P. B. et al. Proximityinduced spin polarization of graphene in contact with half-metallic manganite. ACS Nano 2016, 10, 7532-7541.

5

Avsar, A.; Tan, J. Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Özyilmaz, B. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 2017, 13, 888-893.

6

Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472-2475.

7

Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273-3276.

8

Zhang, Y.; Yuan, H. Y.; Wang, X. S.; Wang, X. R. Breaking the current density threshold in spin-orbit-torque magnetic random access memory. Phys. Rev. B 2018, 97, 144416.

9

Sato, N.; Xue, F.; White, R. M.; Bi, C.; Wang, S. X. Two-terminal spin-orbit torque magnetoresistive random access memory. Nat. Electron. 2018, 1, 508-511.

10

Kim, S. N.; Choi, J. W.; Lim, S. H. Tailoring of magnetic properties of giant magnetoresistance spin valves via insertion of ultrathin non-magnetic spacers between pinned and pinning layers. Sci. Rep. 2019, 9, 1617.

11

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4550.

12

Guo, Y. Q.; Dai, J.; Zhao, J. Y.; Wu, C. Z.; Li, D. Q.; Zhang, L. D.; Ning, W.; Tian, M. L.; Zeng, X. C.; Xie, Y. Large negative magnetoresistance induced by anionic solid solutions in two-dimensional spin-frustrated transition metal chalcogenides. Phys. Rev. Lett. 2014, 113, 157202.

13

Jiang, P. H.; Li, L.; Liao, Z. L.; Zhao, Y. X.; Zhong, Z. C. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 2018, 18, 3844-3849.

14

Zhang, W.; Wong, P. K. J.; Zhou, X. C.; Rath, A.; Huang, Z. C.; Wang, H. Y.; Morton, S. A.; Yuan, J. R.; Zhang, L.; Chua, R. et al. Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy. ACS Nano 2019, 13, 2253-2261.

15

Mouafo, L. D. N.; Godel, F.; Melinte, G.; Hajjar-Garreau, S.; Majjad, H.; Dlubak, B.; Ersen, O.; Doudin, B.; Simon, L.; Seneor, P. et al. Anisotropic magneto-coulomb properties of 2D-0D heterostructure single electron device. Adv. Mater. 2018, 30, 1802478.

16

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and berry's phase in graphene. Nature 2005, 438, 201-204.

17

Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491-495.

18

Vasileva, G.; Alekseev, P.; Vasilyev, Y.; Dmitriev, A.; Kachorovskii, V.; Smirnov, D.; Schmidt, H.; Haug, R. Magnetoresistance of monolayer graphene with short-range disorder. Phys. Status Solidi B 2019, 256, 1800525.

19

Wu, H. C.; Chaika, A. N.; Hsu, M. C.; Huang, T. W.; Abid, M.; Abid, M.; Aristov, V. Y.; Molodtsova, O. V.; Babenkov, S. V.; Niu, Y. et al. Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. Nat. Commun. 2017, 8, 14453.

20

Rein, M.; Richter, N.; Parvez, K.; Feng, X. L.; Sachdev, H.; Kläui, M.; Müllen, K. Magnetoresistance and charge transport in graphene governed by nitrogen dopants. ACS Nano 2015, 9, 1360-1366.

21

Hong, X.; Cheng, S. H.; Herding, C.; Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 2011, 83, 085410.

22

Liu, Y. P.; Liu, X.; Zhang, Y. J.; Xia, Q. L.; He, J. Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology 2017, 28, 235303.

23

Chen, J. J.; Wu, H. C.; Yu, D. P.; Liao, Z. M. Magnetic moments in graphene with vacancies. Nanoscale 2014, 6, 8814-8821.

24

Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361-394.

25

Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

26

Mohiuddin, T. M. G.; Hill, E.; Elias, D.; Zhukov, A.; Novoselov, K.; Geim, A. Graphene in multilayered CPP spin valves. IEEE Trans. Magn. 2008, 44, 2624-2627.

27

Lu, J. M.; Zhang, H. J.; Shi, W.; Wang, Z.; Zheng, Y.; Zhang, T.; Wang, N.; Tang, Z. K.; Sheng, P. Graphene magnetoresistance device in van der Pauw geometry. Nano Lett. 2011, 11, 2973-2977.

28
Kiesewetter, D. V.; Malyugin, V. I.; Reznik, A. S.; Yudin, A. V.; Zhuravleva, N. M. Experimental setup for investigation of optically inhomogeneous objects by the spectral-correlation method. In Proceedings of 2017 XXVI International Scientific Conference Electronics, Sozopol, Bulgaria, 2017.https://doi.org/10.1109/ET.2017.8124354
DOI
29

Heo, J.; Chung, H. J.; Lee, S. H.; Yang, H.; Seo, D. H.; Shin, J. K.; Chung, U. I.; Seo, S.; Hwang, E. H.; Sarma, S. D. Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Phys. Rev. B 2011, 84, 035421.

30
Poklonskl, N. A.; Siahlo, A. I.; Vyrko, S. A.; Popov, A. M.; Lozovik, Y. E. Tunneling current between graphene layers. In Physics, Chemistry and Applications of Nanostructures-Proceedings of the International Conference Nanomeeting; Borisenko, V. E.; Gaponenko, S. V.; Gurin, V. S.; Kam, C. H., Eds.; World Scientific Publishing Co Pte Ltd: Singapore, 2013; pp 135-138.https://doi.org/10.1142/9789814460187_0033
DOI
31

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

32

Sagar, R. U. R.; Galluzzi, M.; Wan, C. H.; Shehzad, K.; Navale, S. T.; Anwar, T.; Mane, R. S.; Piao, H. G.; Ali, A.; Stadler, F. J. Large, linear, and tunable positive magnetoresistance of mechanically stable graphene foam-toward high-performance magnetic field sensors. ACS Appl. Mater. Interfaces 2017, 9, 1891-1898.

33

Gopinadhan, K.; Shin, Y. J.; Jalil, R.; Venkatesan, T.; Geim, A. K.; Neto, A. H. C.; Yang, H. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures. Nat. Commun. 2015, 6: 8337.

34

El Moutaouakil, A.; Kang, H. C.; Handa, H.; Fukidome, H.; Suemitsu, T.; Sano, E.; Suemitsu, M.; Otsuji, T. Room temperature logic inverter on epitaxial graphene-on-silicon device. Jpn. J. Appl. Phys. 2011, 50, 070113.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2019
Revised: 12 June 2019
Accepted: 07 July 2019
Published: 03 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We thank Prof. Zhenhua Qiao and Mr. Tao Hou for valuable discussions. This work was supported by the National Natural Science Foundation Committee of the China Academy of Engineering Physics (NSAF) (No. U1630108) and the joint fund of the National Key Research and Development Program of China (No. 2017YFA0402902) and the National Natural Science Foundation of China (No. 11434009). This research was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Return