Journal Home > Volume 12 , Issue 10

Energy storage devices with flexible form factor have become critical components of wearable electronic systems. Inspired by methods of monolithic integration in the microelectronics fabrication process, we propose a planar flexible full-solid-state lithium-ion battery (FSLB) architecture and a layer-by-layer stencil printing assembly method for fabricating batteries on polyethylene terephthalate (PET) substrate. FSLBs use quasi-solid electrolyte based on LiTFSI and ultraviolet (UV)-curable ethoxylated trimethylolpropane triacrylate (ETPTA) polymeric matrix in combination with Li4Ti5O12 (LTO)/LiFePO4 (LFP)-based electrodes. Excellent mechanical flexibility (< 10 mm bending radius) can be achieved. The electrochemical characteristics of electrolyte, including ion conductivity, physical stability during room-temperature and tender assembly processes, are promising. A complete thin film-shape FSLB demonstrated working operation both under planar and bending conditions. The unique architecture and assembly processes open new ways for planar flexible devices to be integrated with flexible energy devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods

Show Author's information Zhenxuan ZhaoHuaqiang Wu( )
Institute of Microelectronics,Tsinghua University,Beijing,100084,China;

Abstract

Energy storage devices with flexible form factor have become critical components of wearable electronic systems. Inspired by methods of monolithic integration in the microelectronics fabrication process, we propose a planar flexible full-solid-state lithium-ion battery (FSLB) architecture and a layer-by-layer stencil printing assembly method for fabricating batteries on polyethylene terephthalate (PET) substrate. FSLBs use quasi-solid electrolyte based on LiTFSI and ultraviolet (UV)-curable ethoxylated trimethylolpropane triacrylate (ETPTA) polymeric matrix in combination with Li4Ti5O12 (LTO)/LiFePO4 (LFP)-based electrodes. Excellent mechanical flexibility (< 10 mm bending radius) can be achieved. The electrochemical characteristics of electrolyte, including ion conductivity, physical stability during room-temperature and tender assembly processes, are promising. A complete thin film-shape FSLB demonstrated working operation both under planar and bending conditions. The unique architecture and assembly processes open new ways for planar flexible devices to be integrated with flexible energy devices.

Keywords: flexible, lithium-ion battery, polymer electrolyte, printable, full-solid-state battery

References(48)

1
Sereethavekul, W.; Ekpanyapong, M. The design of a wristband screen application for interface with android systems. In Proceedings of the 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Ratchasima, Thailand, 2014.https://doi.org/10.1109/ECTICon.2014.6839751
DOI
2

Jiang, H.; Wang, H. T.; Liu, G.; Su, Z. W.; Wu, J. F.; Liu, J. P.; Zhang, X. N.; Chen, Y. Q.; Zhou, W. W. Light-weight, flexible, low-voltage electrothermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices. J. Alloys Compd. 2017, 699, 1049-1056.

3
Kim, D.; Park, J.; Kim, K.; Park, H. H.; Ahn, S. Propulsion and control of implantable micro-robot based on wireless power transfer. In Proceedings of 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 2015.
4

Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S. Y.; Song, S. W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192-5197.

5

Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/ silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217-1222.

6

Lee, Y. H.; Kim, J. S.; Noh, J.; Lee, I.; Kim, H. J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T. S.; Lee, J. Y. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753-5761.

7

Pu, X.; Li, L. X.; Song, H. Q.; Du, C. H.; Zhao, Z. F.; Jiang, C. Y.; Cao, G. Z.; Hu, W. G.; Wang, Z. L. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 2015, 27, 2472-2478.

8

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810-4816.

9

Du, C. F.; Liang, Q. H.; Luo, Y. B.; Zheng, Y.; Yan, Q. Y. Recent advances in printable secondary batteries. J. Mater. Chem. A 2017, 5, 22442-22458.

10

Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168-5177.

11

Kim, S. H.; Choi, K. H.; Cho, S. J.; Yoo, J.; Lee, S. S.; Lee, S. Y. Flexible/ shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 2018, 11, 321-330.

12

Chen, S. K.; Chiu, K. F.; Su, S. H.; Liu, S. H.; Hou, K. H.; Leu, H. J.; Hsiao, C. C. Low contact resistance carbon thin film modified current collectors for lithium ion batteries. Thin Solid Films 2014, 572, 56-60.

13

Chen, S. A.; Chiou, Y. C. Effect of contact between a current collector and a polyacetylene electrode on electrochemical behavior in polyacetylene/ lithium batteries. J. Electrochem. Soc. 1984, 131, 1046-1049.

14

Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J. Power Sources 2010, 195, 845-852.

15

Cao, G. Z. Search for better materials for rechargeable electric energy storage. Natl. Sci. Rev. 2017, 4, 16.

16
Cao, G. Z. Positive impacts of defects and amorphous nature of electrodes for Li-ion and Na-ion batteries. In 248th National Meeting of the American-Chemical-Society (ACS), San Francisco, CA, USA, 2014.
17
Li, Y. W.; Cao, G. Z. Nanostructured electrodes for lithium ion batteries. In 245th National Spring Meeting of the American-Chemical-Society (ACS), New Orleans, LA, USA, 2013.
18

Wu, X.; Han, Z. C.; Zheng, X.; Yao, S. Y.; Yang, X.; Zhai, T. Y. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410-417.

19

Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017, 29, 1603020.

20

David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci. Rep. 2015, 5, 9792.

21

Hu, T.; Sun, X.; Sun, H. T.; Yu, M. P.; Lu, F. Y.; Liu, C. S.; Lian, J. Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 2013, 51, 322-326.

22

Wang, C. Y.; Wallace, G. G. Flexible electrodes and electrolytes for energy storage. Electrochim. Acta 2015, 175, 87-95.

23

Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771-2805.

24

Wu, H. P.; Yang, Q.; Meng, Q. H.; Ahmad, A.; Zhang, M.; Zhu, L. Y.; Liu, Y. G.; Wei, Z. X. A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries. J. Mater. Chem. A 2016, 4, 2115-2121.

25

Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.

26

Choi, K. H.; Kim, S. H.; Ha, H. J.; Kil, E. H.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S. Y. Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. J. Mater. Chem. A 2013, 1, 5224-5231.

27

Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44-52.

28

Ha, H. J.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim. Acta 2011, 57, 40-45.

29

Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476-481.

30

Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Z. Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends. Polymer 2001, 42, 9121-9131.

31

Wang, J. F.; Müller, M.; Wang, Z. G. Nucleation in A/B/AB blends: Interplay between microphase assembly and macrophase separation. J. Chem. Phys. 2009, 130, 154902.

32

Christie, A. M.; Lilley, S. J.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 2005, 433, 50-53.

33

Stolwijk, N. A.; Heddier, C.; Reschke, M.; Wiencierz, M.; Bokeloh, J.; Wilde, G. Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes. Macromolecules 2013, 46, 8580-8588.

34

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.

35

Long, H.; Shi, T. L.; Hu, H.; Jiang, S. L.; Xi, S.; Tang, Z. R. Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 2014, 4, 7413.

36

Hou, X. J.; Wang, X. F.; Liu, B.; Wang, Q. F.; Luo, T.; Chen, D.; Shen, G. Z. Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 2014, 6, 8858-8864.

37

Cao, S. M.; Feng, X.; Song, Y. Y.; Xue, X.; Liu, H. J.; Miao, M.; Fang, J. H.; Shi, L. Y. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paperelectrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10695-10701.

38

Li, H. H.; Zhang, L. L.; Fan, C. Y.; Wu, X. L.; Wang, H. F.; Li, X. Y.; Wang, K.; Sun, H. Z.; Zhang, J. P. Flexible paper electrodes constructed from Zn2GeO4 nanofibers anchored with amorphous carbon for advanced lithium ion batteries. J. Mater. Chem. A 2016, 4, 2055-2059.

39

Tron, A.; Jo, Y. N.; Oh, S. H.; Park, Y. D.; Mun, J. Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl. Mater. Interfaces 2017, 9, 12391-12399.

40

Wu, C. Y.; Wang, Y. X.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries. J. Solid State Electrochem. 2012, 16, 3915-3921.

41

Ogihara, N.; Kawauchi, S.; Okuda, C.; Itou, Y.; Takeuchi, Y.; Ukyo, Y. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell. J. Electrochem. Soc. 2012, 159, A1034-A1039.

42

Kim, G. Y.; Petibon, R.; Dahn, J. R. Effects of succinonitrile (SN) as an electrolyte additive on the impedance of LiCoO2/graphite pouch cells during cycling. J. Electrochem. Soc. 2014, 161, A506-A512.

43

Cao, L. Y.; Hui, Y. N.; Ouyang, H. B.; Huang, J. F.; Xu, Z. W.; Li, J. Y.; Zhang, W. Z.; Chai, S. M.; Guo, S. W. Li4Ti5O12 hollow mesoporous microspheres assembled from nanoparticles for high rate lithium-ion battery anodes. RSC Adv. 2015, 5, 35643-35650.

44

Wang, G. K.; Lu, C. X.; Zhang, X.; Wan, B. A.; Liu, H. Y.; Xia, M. R.; Gou, H. Y.; Xin, G. Q.; Lian, J.; Zhang, Y. G. Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode. Nano Energy 2017, 36, 46-57.

45

Liu, Y.; Gorgutsa, S.; Santato, C.; Skorobogatiy, M. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 2012, 159, A349-A356.

46

Fu, K. K.; Cheng, J.; Li, T.; Hu, L. B. Flexible batteries: From mechanics to devices. ACS Energy Lett. 2016, 1, 1065-1079.

47

Hsu, P. I.; Huang, M.; Xi, Z.; Wagner, S.; Suo, Z.; Sturm, J. C. Spherical deformation of compliant substrates with semiconductor device islands. J. Appl. Phys. 2004, 95, 705-712.

48

Lacour, S. P.; Wagner, S.; Narayan, R. J.; Li, T.; Suo, Z. G. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 2006, 100, 014913.

File
12274_2019_2471_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 March 2019
Revised: 08 June 2019
Accepted: 05 July 2019
Published: 17 July 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2017YFB0405604) and the Natural Science Foundation of China (No. 51502019).

Return