AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single small molecule-assembled nanoparticles mediate efficient oral drug delivery

Xin Yang1,3<Chao Ma2,3<Zeming Chen3Jun Liu3Fuyao Liu3Rongbin Xie4Haitian Zhao1,3Gang Deng3Ann T. Chen5Ningbo Gong6Lei Yao1,3Pengjian Zuo1Kangkang Zhi1Jiacheng Wang1Xiaobin Gao7Jing Wang1Louzhen Fan4Jiangbing Zhou3,5( )
School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin,150090,China;
College of Biological Sciences and Biotechnology,Beijing Forestry University,Beijing,100083,China;
Department of Neurosurgery,Yale University,New Haven, CT,06510,USA;
Department of Chemistry,Beijing Normal University,Beijing,100875,China;
Department of Biomedical Engineering,Yale University,New Haven, CT,06510,USA;
Beijing Key Laboratory of Polymorphic Drugs,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing,100050,China;
Department of Pathology,Yale University,New Haven, CT,06510,USA;

§ Xin Yang and Chao Ma contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Oral drug delivery, which requires surviving the harsh environment in the gastrointestinal (GI) tract and penetrating the intestinal epithelium, has not been achieved using simple formulation nanoparticles (NPs). Medicinal natural products (MNPs) have been widely used in traditional medicine for disease management through oral consumption. However, most pharmacologically active compounds within MNPs do not have the properties suitable for oral applications. We hypothesize that some MNPs contain natural nanomaterials that can convert those compounds into oral formulations by forming NPs. After screening 66 MNPs, we identified five classes of small molecules that form NPs, many of which are capable of efficient drug encapsulation and GI penetration. We show that one of them, dehydrotrametenolic acid (DTA), is capable of mediating oral delivery for effective disease treatment. We determined that DTA NPs assemble through hydrogen bonding and penetrate the GI tract via apical sodium-dependent bile acid transporter. Our study reveals a novel class of single component, small molecule-assembled NPs for oral drug delivery, and suggests a novel approach to modernizing MNPs through nanomaterial discovery.

Electronic Supplementary Material

Download File(s)
12274_2019_2470_MOESM1_ESM.pdf (7 MB)

References

1

Pridgen, E. M.; Alexis, F.; Farokhzad, O. C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Del. 2015, 12, 1459-1473.

2

Pfeiffer, P.; Mortensen, J. P.; Bjerregaard, B.; Eckhoff, L.; Schønnemann, K.; Sandberg, E.; Aabo, K.; Jakobsen, A. Patient preference for oral or intravenous chemotherapy: A randomised cross-over trial comparing capecitabine and Nordic fluorouracil/leucovorin in patients with colorectal cancer. Eur. J. Cancer 2006, 42, 2738-2743.

3

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.

4

Agrawal, U.; Sharma, R.; Gupta, M.; Vyas, S. P. Is nanotechnology a boon for oral drug delivery? Drug Discov. Today 2014, 19, 1530-1546.

5

Chalasani, K. B.; Russell-Jones, G. J.; Yandrapu, S. K.; Diwan, P. V.; Jain, S. K. A novel Vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release. 2007, 117, 421-429.

6

Pridgen, E. M.; Alexis, F.; Kuo, T. T.; Levy-Nissenbaum, E.; Karnik, R.; Blumberg, R. S.; Langer, R.; Farokhzad, O. C. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci. Transl. Med. 2013, 5, 213ra167.

7

Farnsworth, N. R.; Akerele, O.; Bingel, A. S.; Soejarto, D. D.; Guo, Z. Medicinal plants in therapy. Bull. World Health Organ. 1985, 63, 965-981.

8

Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311-335.

9

Kumari, A.; Kumar, V.; Yadav, S. K. Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends Med. Res. 2012, 7, 34-42.

10

Sucher, N. J. Insights from molecular investigations of traditional Chinese herbal stroke medicines: Implications for neuroprotective epilepsy therapy. Epilepsy Behav. 2006, 8, 350-362.

11

Strohbehn, G.; Coman, D.; Han, L.; Ragheb, R. R. T.; Fahmy, T. M.; Huttner, A. J.; Hyder, F.; Piepmeier, J. M.; Saltzman, W. M.; Zhou, J. B. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. J. Neuro-Oncol. 2015, 121, 441-449.

12

Chen, Y. K.; Gou, X. C.; Kong, D. K.; Wang, X. F.; Wang, J. H.; Chen, Z. M.; Huang, C.; Zhou, J. B. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF. Oncotarget 2015, 6, 32575-32585.

13

Zhou, J. B.; Wulfkuhle, J.; Zhang, H.; Gu, P. H.; Yang, Y. Q.; Deng, J. H.; Margolick, J. B.; Liotta, L. A.; Petricoin Ⅲ, E.; Zhang, Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl. Acad. Sci. USA 2007, 104, 16158-16163.

14

Han, L.; Cai, Q.; Tian, D. F.; Kong, D. K.; Gou, X. C.; Chen, Z. M.; Strittmatter, S. M.; Wang, Z. H.; Sheth, K. N.; Zhou, J. B. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine 2016, 12, 1833-1842.

15

Han, L.; Kong, D. K.; Zheng, M. Q.; Murikinati, S.; Ma, C.; Yuan, P.; Li, L. Y.; Tian, D. F.; Cai, Q.; Ye, C. L. et al. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano 2016, 10, 4209-4218.

16

Zhou, J. B.; Patel, T. R.; Fu, M.; Bertram, J. P.; Saltzman, W. M. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 2012, 33, 583-591.

17

Zhou, J. B.; Patel, T. R.; Sirianni, R. W.; Strohbehn, G.; Zheng, M. Q.; Duong, N.; Schafbauer, T.; Huttner, A. J.; Huang, Y. Y.; Carson, R. E. et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl. Acad. Sci. USA 2013, 110, 11751-11756.

18

Zhu, L. X.; Xu, J.; Zhang, S. J.; Wang, R. J.; Huang, Q.; Chen, H. B.; Dong, X. P.; Zhao, Z. Z. Qualitatively and quantitatively comparing secondary metabolites in three medicinal parts derived from Poria cocos (Schw. ) Wolf using UHPLC-QTOF-MS/MS-based chemical profiling. J. Pharmaceut. Biomed. Anal. 2018, 150, 278-286.

19

Bardelmeijer, H. A.; Beijnen, J. H.; Brouwer, K. R.; Rosing, H.; Nooijen, W. J.; Schellens, J. H.; van Tellingen, O. Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin. Cancer Res. 2000, 6, 4416-4421.

20

Beijnen, J. H.; Huizing, M. T.; ten Bokkel Huinink, W. W.; Veenhof, C. H.; Vermorken, J. B.; Giaccone, G.; Pinedo, H. M. Bioanalysis, pharmacokinetics, and pharmacodynamics of the novel anticancer drug paclitaxel (Taxol). Semin. Oncol. 1994, 21, 53-62.

21

Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987, 6, 559-593.

22

Koliaki, C.; Doupis, J. Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther. 2011, 2, 101-121.

23

Nauck, M. A.; Kleine, N.; Ørskov, C.; Holst, J. J.; Willms, B.; Creutzfeldt, W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993, 36, 741-744.

24

Garber, A. J. Incretin-based therapies in the management of type 2 diabetes: Rationale and reality in a managed care setting. Am. J. Manag. Care 2010, 16, S187-S194.

25

Fornaro, T.; Burini, D.; Biczysko, M.; Barone, V. Hydrogen-bonding effects on infrared spectra from anharmonic computations: Uracil-water complexes and uracil dimers. J. Phys. Chem. A 2015, 119, 4224-4236.

26

Huggins, C. M.; Pimentel, G. C. Systematics of the infrared spectral properties of hydrogen bonding systems: Frequency shift, half width and intensity. J. Phys. Chem. 1956, 60, 1615-1619.

27

Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L. The nature of hydrogen in X-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A 1996, 14, 1314-1320.

28

Stellaard, F.; Sackmann, M.; Sauerbruch, T.; Paumgartner, G. Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids. J. Lipid. Res. 1984, 25, 1313-1319.

29

Kuipers, F.; Bloks, V. W.; Groen, A. K. Beyond intestinal soap-bile acids in metabolic control. Nat. Rev. Endocrinol. 2014, 10, 488-498.

30

Al-Hilal, T. A.; Chung, S. W.; Alam, F.; Park, J.; Lee, K. E.; Jeon, H.; Kim, K.; Kwon, I. C.; Kim, I. S.; Kim, S. Y. et al. Functional transformations of bile acid transporters induced by high-affinity macromolecules. Sci. Rep. 2014, 4, 4163.

31

Craddock, A. L.; Love, M. W.; Daniel, R. W.; Kirby, L. C.; Walters, H. C.; Wong, M. H.; Dawson, P. A. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 1998, 274, G157-G169.

32

Sun, Z.; Ma, C. H.; Yang, L.; Zu, Y. G.; Zhang, R. R. Production of Ursolic acid nanoparticles by supercritical antisolvent precipitation. Adv. Mater. Res. 2011, 233-235, 2210-2214.

33

Xia, X. J.; Liu, H. W.; Lv, H. X.; Zhang, J.; Zhou, J. P.; Zhao, Z. Y. Preparation, characterization, and in vitro/vivo studies of oleanolic acid-loaded lactoferrin nanoparticles. Drug Des. Dev. Ther. 2017, 11, 1417-1427.

34

Zhou, M. J.; Zhang, X. J.; Yang, Y. L.; Liu, Z.; Tian, B. S.; Jie, J. S.; Zhang, X. H. Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials 2013, 34, 8960-8967.

35

Cragg, G. M.; Newman, D. J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670-3695.

Nano Research
Pages 2468-2476
Cite this article:
Yang X, Ma C, Chen Z, et al. Single small molecule-assembled nanoparticles mediate efficient oral drug delivery. Nano Research, 2019, 12(10): 2468-2476. https://doi.org/10.1007/s12274-019-2470-0
Topics:

836

Views

52

Crossref

N/A

Web of Science

58

Scopus

11

CSCD

Altmetrics

Received: 11 December 2018
Revised: 01 July 2019
Accepted: 01 July 2019
Published: 24 July 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return