Journal Home > Volume 12 , Issue 10

Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities, voltage ranges, and low cost. However, serious capacity attenuation and poor rate performance limit their application. This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) layer material by designing core–shell LiNi0.8Co0.1Mn0.1O2 (CS-NCM811). CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime (C4H8N2O2) and nickel ion to form Ni(C4H7N2O2)2. The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface, leading to a high capacity and excellent cycle stability. The capacity retention of CS-NCM811 was 72.8%, much higher than that of NCM811 (47.1%) after 500 cycles at a rate of 5 C. Not only is this method a novel strategy to design high capacity cathode materials but also provides some new insights into the cycle stability of nickel-rich layered cathode materials.

File
12274_2019_2469_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 May 2019
Revised: 13 June 2019
Accepted: 27 June 2019
Published: 03 August 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the Youth Innovation Promotion Association CAS (No. 2016152), the University of Chinese Academy of Sciences, and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. ZDKYYQ20170001).

Return