Journal Home > Volume 12 , Issue 8

Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of RNA nanotubes

Show Author's information Hui Li1,,,, ,§Shaoying Wang1,,,, ,§Zhouxiang Ji1,§Congcong Xu1Lyudmila S. Shlyakhtenko2Peixuan Guo1( )
Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology&Cell Biology, College of Medicine,Dorothy M.Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH,43210,USA;
UNMC Nanoimaging Core Facility, Department of Pharmaceutical Sciences,College of Pharmacy University of Nebraska Medical Center,Omaha, NE,68182,USA;

Present address: University of California, San Francisco, CA, 94158, USA

§ Hui Li, Shaoying Wang, and Zhouxiang Ji contributed equally to this work.

Abstract

Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.

Keywords: RNA nanotechnology, peptide sensing, RNA nanotube, nanobiotechnology

References(58)

1

Koman, V. B.; Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Giraldo, J. P.; Strano, M. S. Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab Chip 2017, 17, 4015-4024.

2

Li, Y.; Denny, P.; Ho, C. M.; Montemagno, C.; Shi, W.; Qi, F.; Wu, B.; Wolinsky, L.; Wong, D. T. The oral fluid MEMS/NEMS chip (OFMNC): Diagnostic & translational applications. Adv. Dent. Res. 2005, 18, 3-5.

3

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

4

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.

5

Colinge, J. P.; Lee, C. W.; Afzalian, A.; Akhavan, N. D.; Yan, R.; Ferain, I.; Razavi, P.; O'Neill, B.; Blake, A.; White, M. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225-229.

6

Koehne, J.; Chen, H.; Li, J.; Cassell, A. M.; Ye, Q.; Ng, H. T.; Han, J.; Meyyappan, M. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 2003, 14, 1239-1245.

7

Fritzsche, W.; Taton, T. A. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 2003, 14, R63-R73.

8

McRae, M. P.; Simmons, G. W.; Wong, J.; Shadfan, B.; Gopalkrishnan, S.; Christodoulides, N.; McDevitt, J. T. Programmable bio-nano-chip system: A flexible point-of-care platform for bioscience and clinical measurements. Lab Chip 2015, 15, 4020-4031.

9

Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209-215.

10

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442-453.

11

Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705-1722.

12

Yue, H. Y.; Zhang, H.; Huang, S.; Lin, X. Y.; Gao, X.; Chang, J.; Yao, L. H.; Guo, E. J. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 2017, 89, 592-597.

13

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

14

Martel, S.; Felfoul, O.; Mathieu, J. B.; Chanu, A.; Tamaz, S.; Mohammadi, M.; Mankiewicz, M.; Tabatabaei, N. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Rob. Res. 2009, 28, 1169-1182.

15

Qiu, M. K.; Khisamutdinov, E.; Zhao, Z. Y.; Pan, C.; Choi, J. W.; Leontis, N. B.; Guo, P. X. RNA nanotechnology for computer design and in vivo computation. Philos. Trans. Roy. Soc. A Math. Phys. Sci. 2013, 371, 20120310.

16

Goldsworthy, V.; LaForce, G.; Abels, S.; Khisamutdinov, E. F. Fluorogenic RNA aptamers: A nano-platform for fabrication of simple and combinatorial logic gates. Nanomaterials 2018, 8, 984.

17

Lee, T.; Yagati, A. K.; Pi, F. M.; Sharma, A.; Choi, J. W.; Guo, P. X. Construction of RNA-quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 2015, 9, 6675-6682.

18

Sung, J. H.; Kam, C.; Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010, 10, 446-455.

19

Hu, Y.; Fine, D. H.; Tasciotti, E.; Bouamrani, A.; Ferrari, M. Nanodevices in diagnostics. Nanomed. Nanobiotechnol. 2011, 3, 11-32.

20

Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257-288.

21

Jain, K. K. Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 2003, 3, 153-161.

22

Han, D.; Park, Y.; Kim, H.; Lee, J. B. Self-assembly of free-standing RNA membranes. Nat. Commun. 2014, 5, 4367.

23

Shasha, C.; Henley, R. Y.; Stoloff, D. H.; Rynearson, K. D.; Hermann, T.; Wanunu, M. Nanopore-based conformational analysis of a viral RNA drug target. ACS Nano 2014, 8, 6425-6430.

24

Borzooeian, Z.; Taslim, M. E.; Ghasemi, O.; Rezvani, S.; Borzooeian, G.; Nourbakhsh, A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018, 13, e0197972.

25

Navas, H.; Picher, M.; Andrieux-Ledier, A.; Fossard, F.; Michel, T.; Kozawa, A.; Maruyama, T.; Anglaret, E.; Loiseau, A.; Jourdain, V. Unveiling the evolutions of nanotube diameter distribution during the growth of single-walled carbon nanotubes. ACS Nano 2017, 11, 3081-3088.

26

Chen, G. H.; Seki, Y.; Kimura, H.; Sakurai, S.; Yumura, M.; Hata, K.; Futaba, D. N. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition. Sci. Rep. 2014, 4, 3804.

27

Konduri, S.; Mukherjee, S.; Nair, S. Controlling nanotube dimensions: Correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes. ACS Nano 2007, 1, 393-402.

28

Thill, A.; Maillet, P.; Guiose, B.; Spalla, O.; Belloni, L.; Chaurand, P.; Auffan, M.; Olivi, L.; Rose, J. Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. J. Am. Chem. Soc. 2012, 134, 3780-3786.

29

Guo, P. X. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 2010, 5, 833-842.

30

Li, H.; Lee, T.; Dziubla, T.; Pi, F. M.; Guo, S. J.; Xu, J.; Li, C.; Haque, F.; Liang, X. J.; Guo, P. X. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631-655.

31

Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulmé, J. J.; Isambert, H.; Guo, P. X.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro, B. A. A boost for the emerging field of RNA nanotechnology. ACS Nano 2011, 5, 3405-3418.

32

Kim, H.; Park, Y.; Lee, J. B. Self-assembled messenger RNA nanoparticles (MRNA-NPs) for efficient gene expression. Sci. Rep. 2015, 5, 12737.

33

Boerneke, M. A.; Dibrov, S. M.; Hermann, T. Crystal-structure-guided design of self-assembling RNA nanotriangles. Angew. Chem. , Int. Ed. 2016, 55, 4097-4100.

34

Shu, Y.; Pi, F. M.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B. M.; Guo, P. X. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 74-89.

35

Shukla, N.; Yan, I. K.; Patel, T. Multiplexed detection and quantitation of extracellular vesicle RNA expression using nanostring. In Extracellular RNA: Methods and Protocols; Patel, T., Ed.; Humana Press: New York, NY, 2018; pp 177-185.

DOI
36

Zhang, Y. J.; Leonard, M.; Shu, Y.; Yang, Y. G.; Shu, D.; Guo, P. X.; Zhang, X. T. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano 2017, 11, 335-346.

37

Han, S.; Kim, H.; Lee, J. B. Library SiRNA-generating RNA nanosponges for gene silencing by complementary rolling circle transcription. Sci. Rep. 2017, 7, 10005.

38

Xu, L. L.; Peng, Q. Y.; Zhu, Y.; Zhao, X.; Yang, M. L.; Wang, S. S.; Xue, F. H.; Yuan, Y.; Lin, Z. S.; Xu, F. et al. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn. Nanoscale 2019, 11, 8124-8132.

39

Sajid, M. I.; Jamshaid, U.; Jamshaid, T.; Zafar, N.; Fessi, H.; Elaissari, A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm. 2016, 501, 278-299.

40

Serra, M.; Arenal, R.; Tenne, R. An overview of the recent advances in inorganic nanotubes. Nanoscale 2019, 11, 8073-8090.

41

Geng, R.; Lu, D. Q.; Lai, Y.; Wu, S. F.; Xu, Z. A.; Zhang, W. Peptide nanotube for carbon dioxide chemisorption with regeneration properties and water compatibility. Chem. Commun. 2019, 55, 3797-3800.

42

De Santis, S.; Novelli, F.; Sciubba, F.; Casciardi, S.; Sennato, S.; Morosetti, S.; Scipioni, A.; Masci, G. Switchable length nanotubes from a self-assembling PH and thermosensitive linear L, D-peptide-polymer conjugate. J. Colloid Interface Sci. 2019, 547, 256-266.

43

Burns, J. R.; Stulz, E.; Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 2013, 13, 2351-2356.

44

Burns, J. R.; Göpfrich, K.; Wood, J. W.; Thacker, V. V.; Stulz, E.; Keyser, U. F.; Howorka, S. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. , Int. Ed. 2013, 52, 12069-12072.

45

Bell, N. A.; Keyser, U. F. Nanopores formed by DNA origami: A review. FEBS Lett. 2014, 588, 3564-3570.

46

Geary, C.; Rothemund, P. W. K.; Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014, 345, 799-804.

47

Rothemund, P. W. K.; Ekani-Nkodo, A.; Papadakis, N.; Kumar, A.; Fygenson, D. K.; Winfree, E. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 2004, 126, 16344-16352.

48

Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; LaBean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824-826.

49

Burns, J. R.; Seifert, A.; Fertig, N.; Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 2016, 11, 152-156.

50

Haque, F.; Li, J. H.; Wu, H. C.; Liang, X. J.; Guo, P. X. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 2013, 8, 56-74.

51

Deamer, D.; Akeson, M.; Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016, 34, 518-524.

52

Wang, S. Y.; Haque, F.; Rychahou, P. G.; Evers, B. M.; Guo, P. X. Engineered nanopore of phi29 DNA-packaging motor for real-time detection of single colon cancer specific antibody in serum. ACS Nano 2013, 7, 9814-9822.

53

Thakur, A. K.; Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 2019, 37, 96-101.

54

Fahie, M. A.; Chen, M. Electrostatic interactions between OmpG nanopore and analyte protein surface can distinguish between glycosylated isoforms. J. Phys. Chem. B 2015, 119, 10198-10206.

55

Lyubchenko, Y.; Shlyakhtenko, L. S.; Ando, T. Imaging of nucleic acids with atomic force microscopy. Methods 2011, 54, 274-283.

56

Wendell, D.; Jing, P.; Geng, J.; Subramaniam, V.; Lee, T. J.; Montemagno, C.; Guo, P. X. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat. Nanotechnol. 2009, 4, 765-772.

57

Jing, P.; Haque, F.; Vonderheide, A. P.; Montemagno, C.; Guo, P. X. Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor. Mol. Biosyst. 2010, 6, 1844-1852.

58

Haque, F.; Geng, J.; Montemagno, C.; Guo, P. X. Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA. Nat. Protoc. 2013, 8, 373-392.

File
12274_2019_2463_MOESM1_ESM.pdf (889.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2019
Revised: 06 June 2019
Accepted: 17 June 2019
Published: 11 July 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The research was supported by NIH grants R01 EB012135 and R01 EB019036. P. G.'s Sylvan G. Frank Endowed Chair position in Pharmaceutics and Drug Delivery is funded by the CM Chen Foundation. We would like to thank Lora McBride and Dr. Catherine Hunt for the manuscript modification.

Return