Journal Home > Volume 12 , Issue 8

Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfluid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8 μm was readily prepared without requiring the post-bonding process in the conventional construction of microfluidic chips. Poly(3, 4-ethylenedioxythiophene): poly(4-styrenesulfonate)/graphene quantum dots (PEDOT: PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ fabrication of organic electrochemical transistors on a microfluidic chip

Show Author's information Jianlong Ji1,2Mangmang Li1Zhaowei Chen3Hongwang Wang1Xiaoning Jiang2Kai Zhuo1Ying Liu1Xing Yang4Zhen Gu3Shengbo Sang1( )Yang Shu5( )
College of Information and Computer,Taiyuan University of Technology,Taiyuan,030024,China;
Department of Mechanical and Aerospace Engineering,North Carolina State University,Raleigh,27695,USA;
Department of Bioengineering, California Nanosystems Institute,University of California,Los Angeles, Los Angeles,90095,USA;
The State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument, Tsinghua University,Beijing,100084,China;
Department of Chemistry,Colleges of Sciences, Northeastern University,Shenyang,110819,China;

Abstract

Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfluid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8 μm was readily prepared without requiring the post-bonding process in the conventional construction of microfluidic chips. Poly(3, 4-ethylenedioxythiophene): poly(4-styrenesulfonate)/graphene quantum dots (PEDOT: PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.

Keywords: electrodeposition, transistor, in situ, microfluidic chip, PEDOT: PSS/GQDs composite

References(71)

1

Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

2

Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264-2272.

3

Tang, H.; Lin, P.; Chan, H. L. W.; Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 2011, 26, 4559-4563.

4

Lin, P.; Luo, X. T.; Hsing, I. M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035-4040.

5

Hempel, F.; Law, J. K. Y.; Nguyen, T. C.; Munief, W.; Lu, X. L.; Pachauri, V.; Susloparova, A.; Vu, X. T.; Ingebrandt, S. PEDOT: PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017, 93, 132-138.

6

Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655-3660.

7

Gu, X.; Yao, C. L.; Liu, Y.; Hsing, I. M. 16-channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 2016, 5, 2345-2351.

8

Liang, Y. Y.; Ernst, M.; Brings, F.; Kireev, D.; Maybeck, V.; Offenhäusser, A.; Mayer, D. High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 2018, 7, 1800304.

9

White, S. P.; Dorfman, K. D.; Frisbie, C. D. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 2015, 87, 1861-1866.

10

Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, 2904.

11

Curto, V. F.; Marchiori, B.; Hama, A.; Pappa, A. M.; Ferro, M. P.; Braendlein, M.; Rivnay, J.; Fiocchi, M.; Malliaras, G. G.; Ramuz, M. et al. Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsyst. Nanoeng. 2017, 3, 17028.

12

Liao, Z. R.; Wang, J. F.; Zhang, P. J.; Zhang, Y.; Miao, Y. F.; Gao, S. M.; Deng, Y. L.; Geng, L. N. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens. Bioelectron. 2018, 121, 272-280.

13

Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822-1846.

14

Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398-414.

15

Zhang, M.; Lin, P.; Yang, M.; Yan, F. Fabrication of organic electrochemical transistor arrays for biosensing. Biochim. Biophys. Acta 2013, 1830, 4402-4406.

16

DeFranco, J. A.; Schmidt, B. S.; Lipson, M.; Malliaras, G. G. Photolithographic patterning of organic electronic materials. Org. Electron. 2006, 7, 22-28.

17

Sessolo, M.; Khodagholy, D.; Rivnay, J.; Maddalena, F.; Gleyzes, M.; Steidl, E.; Buisson, B.; Malliaras, G. G. Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 2013, 25, 2135-2139.

18

Curto, V. F.; Ferro, M. P.; Mariani, F.; Scavetta, E.; Owens, R. M. A planar impedance sensor for 3D spheroids. Lab Chip 2018, 18, 933-943.

19

Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295-2302.

20

Guo, X.; Liu, J.; Liu, F. Y.; She, F.; Zheng, Q.; Tang, H.; Ma, M.; Yao, S. Z. Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B 2017, 240, 1075-1082.

21

Fonseca, S. M.; Moreira, T.; Jorge Parola, A.; Pinheiro, C.; Laia, C. A. T. PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices. Sol. Energy Mater. Sol. Cells 2017, 159, 94-101.

22

Shi, Y. D.; Zhang, Y.; Tang, K.; Song, Y. B.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wu, Y. C. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018, 8, 13679-13685.

23

Demuru, S.; Deligianni, H. Surface PEDOT: nafion coatings for enhanced dopamine, serotonin and adenosine sensing. J. Electrochem. Soc. 2017, 164, G129-G138.

24

Si, W. M.; Lei, W.; Han, Z.; Hao, Q. L.; Zhang, Y. H.; Xia, M. Z. Selective sensing of catechol and hydroquinone based on poly(3, 4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sens. Actuator B 2014, 199, 154-160.

25

Song, J. C.; Noh, H.; Lee, J.; Nah, I. W.; Cho, W. I.; Kim, H. T. In situ coating of poly(3, 4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. J. Power Sources 2016, 332, 72-78.

26

Si, W. M.; Lei, W.; Han, Z.; Zhang, Y. H.; Hao, Q. L.; Xia, M. Z. Electrochemical sensing of acetaminophen based on poly(3, 4-ethylenedioxythiophene)/graphene oxide composites. Sens. Actuator B 2014, 193, 823-829.

27

Koizumi, Y.; Shida, N.; Ohira, M.; Nishiyama, H.; Tomita, I.; Inagi, S. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks. Nat. Commun. 2016, 7, 10404.

28

Yang, X.; Wang, Q.; Fan, J. R.; Zhang, M.; Zhou, Z. Y.; Ji, J. L. Extremely sensitive sers detection through the one-step fabrication of a composite nanostructure of substrate and analyte. ECS Electrochem. Lett. 2015, 4, B17-B20.

29

Ji, J. L.; Li, P. W.; Sang, S. B.; Zhang, W. D.; Zhou, Z. Y.; Yang, X.; Dong, H. L.; Li, G.; Hu, J. Electrodeposition of Au/Ag bimetallic dendrites assisted by faradaic AC-electroosmosis flow. AIP Adv. 2014, 4, 031329.

30

Zhang, M.; Yang, X.; Zhou, Z. Y.; Ye, X. Y. Controllable growth of gold nanowires and nanoactuators via high-frequency AC electrodeposition. Electrochem. Commun. 2013, 27, 133-136.

31

Ji, J. L.; Zhou, Z. Y.; Yang, X.; Zhang, W. D.; Sang, S. B.; Li, P. W. One-dimensional nano-interconnection formation. Small 2014, 9, 3014-3029.

32

Chen, S.; Hai, X.; Xia, C.; Chen, X. W.; Wang, J. H. Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging. Chem. -Eur. J. 2013, 19, 15918-15923.

33

Oberhammer, J.; Stemme, G. BCB contact printing for patterned adhesive full-wafer bonded 0-level packages. J. Microelectromech. Syst. 2005, 14, 419-425.

34

Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M. et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133.

35

Stavrinidou, E.; Leleux, P.; Rajaona, H.; Khodagholy, D.; Rivnay, J.; Lindau, M.; Sanaur, S.; Malliaras, G. G. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 2013, 25, 4488-4493.

36

Garreau, S.; Duvail, J. L.; Louarn, G. Spectroelectrochemical studies of poly(3, 4-ethylenedioxythiophene) in aqueous medium. Synth. Met. 2001, 125, 325-329.

37

Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724-4771.

38

Castagnola, V.; Bayon, C.; Descamps, E.; Bergaud, C. Morphology and conductivity of pedot layers produced by different electrochemical routes. Synth. Met. 2014, 189, 7-16.

39

Randriamahazaka, H.; Noël, V.; Chevrot, C. Nucleation and growth of poly(3, 4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J. Electroanal. Chem. 1999, 472, 103-111.

40

Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B. On the origin of the so-called nucleation loop during electropolymerization of conducting polymers. J. Phys. Chem. B 2007, 111, 989-997.

41

Du, X.; Wang, Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochim. Acta 2003, 48, 1713-1717.

42

Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406-414.

43

Tamburri, E.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L. Structure and I2/I- redox catalytic behaviour of PEDOT-PSS films electropolymerized in aqueous medium: Implications for convenient counter electrodes in DSSC. Inorg. Chim. Acta 2011, 377, 170-176.

44

Youk, J. H.; Locklin, J.; Xia, C. J.; Park, M. K.; Advincula, R. Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles. Langmuir 2001, 17, 4681-4683.

45

Schweiss, R.; Lubben, J. F.; Johannsmann, D.; Knoll, W. Electropolymerization of ethylene dioxythiophene (EDOT) in micellar aqueous solutions studied by electrochemical quartz crystal microbalance and surface plasmon resonance. Electrochim. Acta 2005, 50, 2849-2856.

46

Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3, 4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17-27.

47

Melato, A. I.; Viana, A. S.; Abrantes, L. M. Different steps in the electrosynthesis of poly(3, 4-ethylenedioxythiophene) on platinum. Electrochim. Acta 2008, 54, 590-597.

48

Orazem, M. E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: New York, 2008.

DOI
49

Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. Nanotechnology 2009, 20, 235307.

50

Botasini, S.; Mendez, E. Limited diffusion and cell dimensions in a micrometer layer of solution: An electrochemical impedance spectroscopy study. ChemElectroChem 2017, 4, 1891-1895.

51

Scharifker, B. R.; García-Pastoriza, E.; Marino, W. The growth of polypyrrole films on electrodes. J. Electroanal. Chem. 1991, 300, 85-98.

52

Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.; Morales, J.; Palomar-Pardavé, M. Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions. J. Electroanal. Chem. 2008, 613, 67-79.

53

Velev, O. D.; Gangwal, S.; Petsev, D. N. Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2009, 105, 213-246.

54

Velev, O. D.; Bhatt, K. H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738-750.

55

Velev, O. D. Assembly of electrically functional microstructures from colloidal particles. In Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. Caruso, F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.

56

Jones, T. B.; Jones, T. B. Electromechanics of Particles; Cambridge University Press: Cambridge, 2005.

57

Du, Y.; Cui, X.; Li, L.; Tian, H.; Yu, W. X.; Zhou, Z. X. Dielectric properties of DMSO-doped-PEDOT: PSS at THz frequencies. Phys. Status Solidi B 2017, 255, 1700547.

58

Randriamahazaka, H.; Sini, G.; Tran Van, F. Electrodeposition mechanisms and electrochemical behavior of poly(3, 4-ethylenedithiathiophene). J. Phys. Chem. C 2007, 111, 4553-4560.

59

Gamburg, Y. D.; Zangari, G. Theory and Practice of Metal Electrodeposition; Springer: New York, 2011.

DOI
60

Sakmeche, N.; Aeiyach, S.; Aaron, J. J.; Jouini, M.; Lacroix, J. C.; Lacaze, P. C. Improvement of the electrosynthesis and physicochemical properties of poly(3, 4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 1999, 15, 2566-2574.

61

Garreau, S.; Louam, G.; Lefrant, S.; Buisson, J. P.; Froyer, G. Optical study and vibrational analysis of the poly (3, 4-ethylenedioxythiophene) (PEDT). Synth. Met. 1999, 101, 312-313.

62

Akimoto, M.; Furukawa, Y.; Takeuchi, H.; Harada, I.; Soma, Y.; Soma, M. Correlation between vibrational spectra and electrical conductivity of polythiophene. Synth. Met. 1986, 15, 353-360.

63

Alam, M. M.; Wang, J.; Guo, Y. Y.; Lee, S. P.; Tseng, H. S. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 2005, 109, 12777-12784.

64

Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538-3544.

65

Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767.

66

Pathak, C. S.; Singh, J. P.; Singh, R. Preparation of novel graphene-PEDOT: PSS nanocomposite films and fabrication of heterojunction diodes with n-Si. Chem. Phys. Lett. 2018, 694, 75-81.

67

Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.

68

Kepić, D. P.; Marković, Z. M.; Jovanović, S. P.; Peruško, D. B.; Budimir, M. D.; Holclajtner-Antunović, I. D.; Pavlović, V. B.; Marković, B. M. T. Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots. Synth. Met. 2014, 198, 150-154.

69

Tarabella, G.; Balducci, A. G.; Coppedè, N.; Marasso, S.; D'Angelo, P.; Barbieri, S.; Cocuzza, M.; Colombo, P.; Sonvico, F.; Mosca, R. et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta 2013, 1830, 4374-4380.

70

Kim, S. H.; Hong, K.; Lee, K. H.; Frisbie, C. D. Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 2013, 5, 6580-6585.

71

Louet, C.; Cantin, S.; Dudon, J. P.; Aubert, P. H.; Vidal, F.; Chevrot, C. A comprehensive study of infrared reflectivity of poly(3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 2015, 143, 141-151.

Video
12274_2019_2462_MOESM1_ESM.mp4
12274_2019_2462_MOESM2_ESM.mp4
File
12274_2019_2462_MOESM3_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2019
Revised: 10 June 2019
Accepted: 11 June 2019
Published: 11 July 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51705354, 51622507, and 61671271); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Nos. 183290224-S and 201802029).

Return