Journal Home > Volume 12 , Issue 8

Vesicular lithium vanadium phosphate/carbon hollow mesoporous microspheres were fabricated using a facile polyvinylpyrrolidone-assisted aerosol-spray-assisted method and subsequent heat-treatment. While changing the content of polyvinylpyrrolidone, we found that carbon content was adjustable on the surface of lithium vanadium phosphate. By optimizing the carbon content among the composites, the electrochemical performance can be enhanced significantly. The results of electrochemical performance tests suggested that the samples exhibited good cycle performance and high discharge capability in the voltages between 3.0–4.8 V. The observed excellent electrochemical performances could be attributed to the proper content of carbon coating and the vesicular hollow mesoporous microsphere structure, increasing the transmission rate of lithium ions and reducing the structural change during charging and discharging effectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries

Show Author's information Hongxia SunHaoran DuMengkang YuKuangfu HuangNan YuBaoyou Geng( )
College of Chemistry and Materials Science,Anhui Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, NO.189 South Jiuhua Road,Wuhu,241002,China;

Abstract

Vesicular lithium vanadium phosphate/carbon hollow mesoporous microspheres were fabricated using a facile polyvinylpyrrolidone-assisted aerosol-spray-assisted method and subsequent heat-treatment. While changing the content of polyvinylpyrrolidone, we found that carbon content was adjustable on the surface of lithium vanadium phosphate. By optimizing the carbon content among the composites, the electrochemical performance can be enhanced significantly. The results of electrochemical performance tests suggested that the samples exhibited good cycle performance and high discharge capability in the voltages between 3.0–4.8 V. The observed excellent electrochemical performances could be attributed to the proper content of carbon coating and the vesicular hollow mesoporous microsphere structure, increasing the transmission rate of lithium ions and reducing the structural change during charging and discharging effectively.

Keywords: Li3V2(PO4)3, aerosol-spray-assisted approach, polyvinylpyrrolidone, vesicular hollow microsphere, electrochemical properties

References(40)

1

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006-3059.

2

Liu, C. F.; Masse, R.; Nan, X. H.; Cao, G. Z. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 2016, 4, 15-58.

3

Tan, H. T.; Xu, L. H.; Geng, H. B.; Rui, X. H.; Li, C. C.; Huang, S. M. Nanostructured Li3V2(PO4)3 cathodes. Small 2018, 14, 1800567.

4

Chen, L.; Yan, B.; Xu, J.; Wang, C. G.; Chao, Y. M.; Jiang, X. F.; Yang, G. Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 13934-13943.

5

Li, Y. H.; Xiang, K. X.; Zhou, W.; Zhu, Y. R.; Xiao, L.; Chen, X. H.; Chen, H. Li3V2(PO4)3/C composite with hollow coaxial structure for high-capacity and high-rate performance in lithium-ion batteries. Mater. Lett. 2018, 216, 46-49.

6

Wei, Q. L.; Xu, Y. A.; Li, Q. D.; Tan, S. S.; Ren, W. H.; An, Q. Y.; Mai, L. Q. Novel layered Li3V2(PO4)3/r GO&C sheets as high-rate and long-life lithium ion battery cathodes. Chem. Commun. 2016, 52, 8730-8732.

7

Cheng, B.; Zhang, X. D.; Ma, X. H.; Wen, J. W.; Yu, Y.; Chen, C. H. Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. J. Power Sources 2014, 265, 104-109.

8

Rui, X. H.; Sim, D.; Wong, K.; Zhu, J. X.; Liu, W. L.; Xu, C.; Tan, H. T.; Xiao, N.; Hng, H. H.; Lim, T. M. et al. Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries. J. Power Sources 2012, 214, 171-177.

9

Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.

10

Cheng, Y.; Ni, X.; Feng, K.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J. Power Sources 2016, 326, 203-210.

11

Mao, W. F.; Fu, Y. B.; Zhao, H.; Ai, G.; Dai, Y. L.; Meng, D. C.; Zhang, X. H.; Qu, D. Y.; Liu, G.; Battaglia, V. S. et al. Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 12057-12066.

12

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201-1217.

13

Secchiaroli, M.; Nobili, F.; Tossici, R.; Giuli, G.; Marassi, R. Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly (acrylic acid) and D-(+)-glucose as carbon sources. J. Power Sources 2015, 275, 792-798.

14

Wang, L. P.; Bai, J. M.; Gao, P.; Wang, X. Y.; Looney, J. P.; Wang, F. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries. Chem. Mater. 2015, 27, 5712-5718.

15

Nan, X. H.; Zhang, C. K.; Liu, C. F.; Liu, M. M.; Wang, Z. L.; Cao, G. Z. Highly efficient storage of pulse energy produced by triboelectric nano-generator in Li3V2(PO4)3/C cathode Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 862-870.

16

Yan, B.; Chen, L.; Wang, T.; Xu, J.; Wang, H. Y.; Yang, G. Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries. Electrochim. Acta 2015, 176, 1358-1363.

17

Naoi, K.; Kisu, K.; Iwama, E.; Sato, Y.; Shinoda, M.; Okita, N.; Naoi, W. Ultrafast cathode characteristics of nanocrystalline-Li3V2(PO4)3/carbon nanofiber composites. J. Eelectrochem. Soc. 2015, 162, A827-A833.

18

Liang, S. Q.; Tan, Q. G.; Xiong, W.; Tang, Y.; Tan, X. P.; Huang, L. J.; Pan, A. Q.; Cao, G. Z. Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Sci. Rep. 2016, 6, 33682.

19

Wang, Z. Y.; He, W.; Zhang, X. D.; Yue, Y. Z.; Liu, J. H.; Zhang, C. J.; Fang, L. Y. Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes. J. Power Sources 2017, 366, 9-17.

20

Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

21

Li, D. L.; Tian, M.; Xie, R.; Li, Q.; Fan, X. Y.; Gou, L.; Zhao, P.; Ma, S. L.; Shi, Y. X.; Yong, H. T. H. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale 2014, 6, 3302-3308.

22

Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547-7551.

23

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815-3822.

24

Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(Ⅳ)- and cobalt(Ⅱ)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 14977-14981.

25

Kuai, L.; Kan, E. J.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Wang, W. H.; Geng, B. Y. Mesoporous LaMnO3+δ perovskite from spray-pyrolysis with superior performance for oxygen reduction reaction and Zn-air battery. Nano Energy 2018, 43, 81-90.

26

Ding, X. K.; Zhang, L. L.; Yang, X. L.; Fang, H.; Zhou, Y. X.; Wang, J. Q.; Ma, D. Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high- performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42788-42796.

27

Zhang, L.; Hu, L.; Fei, L. F.; Qi, J. Q.; Hu, Y. M.; Wang, Y.; Gu, H. S. Large-scale synthesis of Li3V2(PO4)3@C composites by a modified carbothermal reduction method as cathode material for lithium-ion batteries. RSC Adv. 2017, 7, 25422-25428.

28

Jiang, S. S. Fabrication and characterization of plate-like Li3V2(PO4)3@C as cathode material for energy storage. Solid State Ionics 2018, 325, 128-132.

29

Zhang, X. F.; Kühnel, R. S.; Hu, H. T.; Eder, D.; Balducci, A. Going nano with protic ionic liquids-the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 2015, 12, 207-214.

30

Zhu, X. J.; Yan, Z.; Wu, W. Y.; Zeng, W. C.; Du, Y. X.; Zhong, Y.; Zhai, H. D.; Ji, H. X.; Zhu, Y. W. Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: Towards high-performance composite cathode for lithium ion batteries. Sci. Rep. 2014, 4, 5768.

31

Jiang, Y.; Xu, W. W.; Chen, D. D.; Jiao, Z.; Zhang, H. J.; Ma, Q. L.; Cai, X. H.; Zhao, B.; Chu, Y. L. Graphene modified Li3V2(PO4)3 as a high- performance cathode material for lithium ion batteries. Electrochim. Acta 2012, 85, 377-383.

32

Rai, A. K.; Thi, T. V.; Gim, J.; Kim, S.; Kim, J. Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery. Ceram. Int. 2015, 41, 389-396.

33

Wang, S. L.; Zhang, Z. X.; Deb, A.; Yang, C. C.; Yang, L.; Hirano, S. I. Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries. Electrochim. Acta 2014, 143, 297-304.

34

Yang, M. Z.; Ren, M. M.; Zhu, W. Y.; Liu, W. L.; Zhu, C. F. Li3V2(PO4)3/ graphene nanocomposites with superior cycling performance as cathode materials for lithium ion batteries. Electrochim. Acta 2015, 182, 1046-1052.

35

Hao, S. J.; Zhang, B. W.; Feng, J. Y.; Liu, Y. Y.; Ball, S.; Pan, J. S.; Srinivasan, M.; Huang. Y. Z. Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries. J. Mater. Chem. A 2017, 5, 8510-8518.

36

Sun, P. P.; Zhao, X. Y.; Chen, R. P.; Chen, T.; Ma, L. B.; Fan, Q.; Lu, H. L.; Hu, Y.; Tie, Z. X.; Jin, Z. et al. Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale 2016, 8, 7408-7415.

37

Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444-450.

38

Liao, Y. X.; Li, C.; Lou, X. B.; Hu, X. S.; Ning, Y. Q.; Yuan, F. Y.; Chen, B.; Shen, M.; Hu, B. W. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochim. Acta 2018, 271, 608-616.

39

Li, Y. S.; Wang, J.; Zhou, Z. F.; Deng, J. Q.; Yao, Q. R.; Chu, H. L.; Wang, Z. M.; Sun, L. X.; Zhou, H. Y. Large-scale synthesis of porous Li3V2(PO4)3@C/ AB hollow microspheres with interconnected channel as high performance cathodes for lithium-ion batteries. J. Alloys Compd. 2019, 774, 879-886.

40

Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene- modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687.

File
12274_2019_2461_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 May 2019
Revised: 24 May 2019
Accepted: 05 June 2019
Published: 17 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871005 and 21471006), the Recruitment Program for Leading Talent Team of Anhui Province, the Program for Innovative Research Team of Anhui Education Committee, the Research Foundation for Science and Technology Leaders and Candidates of Anhui Province, the programs for Science and Technology Development of Anhui Province (No. 1501021019), and Anhui Normal University talent training program (No. 2014rcpy12).

Return