Journal Home > Volume 12 , Issue 8

A facile synthetic strategy based on a water-based process is developed for the preparation of metal–organic framework (MOF)-derived materials by revisiting the hydrolyzed non-porous metal–organic frameworks (h-MOF). The poor water stability of MOF has been recognized as key limitations for its commercialization and large-scale applications because the hydrolysis resulted in the complete loss of their functionalities. However, we found that the negative effect of hydrolysis on MOF can be nullified during the heat treatment. As similar to the intact MOF, h-MOF can be used as a precursor for the preparation of MOF-derived materials from porous MOF-derived carbons (MDCs) to MDC@ZnO composites. The property of h-MOF-derived materials is almost equivalent to that of MOF-derived materials. In addition, h-MOF turned the weakness of water instability to the strength of facile water-based process for hybridization. With the demonstration of the hybrid composite between h-MDC@ZnO and reduced graphene oxide (rGO) as a prototype example, it exhibited superior electrochemical performance when evaluated as an electrode material for lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Function-regeneration of non-porous hydrolyzed-MOF-derived materials

Show Author's information Yo Chan Jeong1Jin Weon Seo2Jae Ho Kim1Seunghoon Nam3Min Chang Shin2Young Shik Cho1Jin Syul Byeon2Chong Rae Park1( )Seung Jae Yang2( )
Carbon Nanomaterials Design Laboratory, Research Institute of Advanced Materials and Department of Materials Science and Engineering,Seoul National University,Seoul,08826,Republic of Korea;
Advanced Nanohybrids Lab., Department of Chemical Engineering,Inha University,Incheon,22212,Republic of Korea;
School of Advanced Materials Engineering,College of Engineering, Andong National University,Andong, Gyeongsangbuk-do,36729,Republic of Korea;

Abstract

A facile synthetic strategy based on a water-based process is developed for the preparation of metal–organic framework (MOF)-derived materials by revisiting the hydrolyzed non-porous metal–organic frameworks (h-MOF). The poor water stability of MOF has been recognized as key limitations for its commercialization and large-scale applications because the hydrolysis resulted in the complete loss of their functionalities. However, we found that the negative effect of hydrolysis on MOF can be nullified during the heat treatment. As similar to the intact MOF, h-MOF can be used as a precursor for the preparation of MOF-derived materials from porous MOF-derived carbons (MDCs) to MDC@ZnO composites. The property of h-MOF-derived materials is almost equivalent to that of MOF-derived materials. In addition, h-MOF turned the weakness of water instability to the strength of facile water-based process for hybridization. With the demonstration of the hybrid composite between h-MDC@ZnO and reduced graphene oxide (rGO) as a prototype example, it exhibited superior electrochemical performance when evaluated as an electrode material for lithium-ion batteries.

Keywords: nanomaterials, porous materials, metal–organic framework (MOF), MOF-derived carbon, hydrolyzed MOF

References(78)

1

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.

2

Kitagawa, S. Future porous materials. Acc. Chem. Res. 2017, 50, 514-516.

3

Lee, K. J.; Lee, J. H.; Jeoung, S.; Moon, H. R. Transformation of metal-organic frameworks/coordination polymers into functional nanostructured materials: Experimental approaches based on mechanistic insights. Acc. Chem. Res. 2017, 50, 2684-2692.

4

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28-E62.

5

Chen, K.; Sun, Z. H; Fang, R. P; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

6

Krause, S.; Bon, V.; Senkovska, I.; Többens, D. M.; Wallacher, D.; Pillai, R. S.; Maurin, G.; Kaskel, S. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 2018, 9, 1573.

7

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

8

Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.

9

Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456-463.

10

Kim, T. K.; Lee, K. J.; Cheon, J. Y.; Lee, J. H.; Joo, S. H.; Moon, H. R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940-8946.

11

Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.

12

Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962-968.

13

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1-23.

14

Jiao, L.; Wang, Y.; Jiang, H. L. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

15

Jiao, L; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786-804.

16

Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249-267.

17

Yang, S. J.; Cho, J. H.; Lee, K.; Kim, T.; Park, C. R. Concentration-driven evolution of crystal structure, pore characteristics, and hydrogen storage capacity of metal organic framework-5s: Experimental and computational studies. Chem. Mater. 2010, 22, 6138-6145.

18

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.

19

Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394-12395.

20

Ming, Y.; Kumar, N.; Siegel, D. J. Water adsorption and insertion in MOF-5. ACS Omega 2017, 2, 4921-4928.

21

Kang, J. H.; Kim, T.; Choi, J.; Park, J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, K. T.; Yang, S. J.; Park, C. R. Hidden second oxidation step of hummers method. Chem. Mater. 2016, 28, 756-764.

22

Kim, Y. S.; Kang, J. H.; Kim, T.; Jung, Y.; Lee, K.; Oh, J. Y.; Pank, J.; Park, C. R. Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem. Mater. 2014, 26, 5549-5555.

23

Oh, J. Y.; Yang, S. J.; Park, J. Y.; Kim, T.; Lee, K.; Kim, Y. S.; Han, H. N.; Park, C. R. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 2015, 15, 190-197.

24

Oh, J. Y.; Kim, Y. S.; Jung, Y.; Yang, S. J.; Park, C. R. Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 2016, 10, 2184-2192.

25

Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-10612.

26

Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2018, 8, 1701416.

27

Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 2012, 134, 14338-14340.

28

Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978-16981.

29

Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191-209.

30

Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678-10679.

31

Ming, Y.; Purewal, J.; Yang, J.; Xu, C. C.; Soltis, R.; Warner, J.; Veenstra, M.; Gaab, M.; Müller, U.; Siegel, D. J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time. Langmuir 2015, 31, 4988-4995.

32

Rodríguez, N. A.; Parra, R.; Grela, M. A. Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: Implications on their excitation mechanism. RSC Adv. 2015, 5, 73112-73118.

33

Yang, S. J.; Park, C. R. Preparation of highly moisture-resistant black-colored metal organic frameworks. Adv. Mater. 2012, 24, 4010-4013.

34

Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553-8557.

35

Greer, H. F.; Liu, Y. H.; Greenaway, A.; Wright, P. A.; Zhou, W. Z. Synthesis and formation mechanism of textured MOF-5. Cryst. Growth Des. 2016, 16, 2104-2111.

36

Huang, L. M.; Wang, H. T.; Chen, J. X.; Wang, Z. B.; Sun, J. Y.; Zhao, D. Y.; Yan, Y. S. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Micropor. Mesopor. Mater. 2003, 58, 105-114.

37

Hausdorf, S.; Wagler, J.; Moβig, R.; Mertens, F. O. R. L. Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. J. Phys. Chem. A 2008, 112, 7567-7576.

38

Thirumurugan, A.; Rao, C. N. R. 1, 2-, 1, 3- and 1, 4-benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure. J. Mater. Chem. 2015, 15, 3852-3858.

39

Müller, M.; Turner, S.; Lebedev, O. I.; Wang, Y. M.; Van Tendeloo, G.; Fischer, R. A. Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; x = 1, 2): Preparation and microstructural characterisation. Eur. J. Inorg. Chem. 2011, 2011, 1876-1887.

40

Chen, R. Z.; Hu, Y.; Shen, Z.; Chen, Y. L.; He, X.; Zhang, X. W.; Zhang, Y. Controlled synthesis of carbon nanofibers anchored with ZnxCo3-xO4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2591-2599.

41

Han, S.; Lah, M. S. Simple and efficient regeneration of MOF-5 and HKUST-1 via acid-base treatment. Cryst. Growth Des. 2015, 15, 5568-5572.

42

Tan, K.; Nijem, N.; Canepa, P.; Gong, Q. H.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 2012, 24, 3153-3167.

43

Du, J. H.; Pei, S. F.; Ma, L. P.; Cheng, H. M. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 2014, 26, 1958-1991.

44

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

45

Shan, X. Y.; Wang, Y. Z.; Wang, D. W.; Li, F.; Cheng, H. M. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors. Adv. Energy Mater. 2016, 6, 1502064.

46

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390-5391.

47

Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464-470.

48

Zhu, Q. L.; Xu, Q. Metal-organic framework composites, Chem. Soc. Rev. 2014, 43, 5468-5512.

49

Fletcher, E. A. Solarthermal and solar quasi-electrolytic processing and separations: Zinc from zinc oxide as an example. Ind. Eng. Chem. Res. 1999, 38, 2275-2282.

50

Wu, M. C.; Lee, C. S. Synthesis and thermal decomposition of Zn(tda)H2O[tda = S(CH2COO)22-]. Inorg. Chem. 2006, 45, 9634-9636.

51

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

52

Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7394-7397.

53

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604-9633.

54

Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632-2641.

55

Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723-3728.

56

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187-3194.

57

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

58

Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 2004, 151, A1878-A1885.

59

Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980-985.

60

Sakaushi, K.; Lyalin, A.; Tominaka, S.; Taketsugu, T.; Uosaki, K. Two-dimensional corrugated porous carbon-, nitrogen-framework/metal heterojunction for efficient multielectron transfer processes with controlled kinetics. ACS Nano 2017, 11, 1770-1779.

61

Wong, E. M.; Bonevich, J. E.; Searson, P. C. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J. Phys. Chem. B 1998, 102, 7770-7775.

62

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760-1763.

63

Feng, Y.; Zhang, Y. L.; Song, X. Y.; Wei, Y. Z.; Battaglia, V. S. Facile hydrothermal fabrication of ZnO-graphene hybrid anode materials with excellent lithium storage properties. Sustainable Energy Fuels 2017, 1, 767-779

64

Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954-11961.

65

Sun, X.; Zhou, C. G.; Xie, M.; Sun, H. T.; Hu, T.; Lu, F. Y.; Scott, S. M.; George, S. M.; Lian, J. Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J. Mater. Chem. A 2014, 2, 7319-7326.

66

Kushima, A.; Liu, X. H.; Zhu, G.; Wang, Z. L.; Huang, J. Y.; Li, J. Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 2011, 11, 4535-4541.

67

Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide Nano‐ and microstructures grown directly on metal substrates and their calcined products for application as Li‐ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448-1458.

68

Belliard, F.; Irvine, J. T. S. Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery. J. Power Sources 2001, 97-98, 219-222.

69

Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65-A69.

70

Ahmad, M.; Shi, Y. Y.; Nisar, A.; Sun, H. Y.; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723-7729.

71

Nadimpalli, S. P. V.; Sethuraman, V. A.; Dalavi, S.; Lucht, B.; Chon, M. J.; Shenoy, V. B.; Guduru, P. R. Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J. Power Sources 2012, 215, 145-151.

72

An, S. J.; Li, J. L.; Du, Z. J.; Daniel, C.; Wood Ⅲ, D. L. Fast formation cycling for lithium ion batteries. J. Power Sources 2017, 342, 846-852.

73

Xia, F.; Kwon, S.; Lee, W. W.; Liu, Z. M.; Kim, S.; Song, T.; Choi, K. J.; Paik, U.; Park, W. I. Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett. 2015, 15, 6658-6664.

74

Su, Q. M.; Dong, Z. M.; Zhang, J.; Du, G. H.; Xu, B. S. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: Two reaction modes are revealed. Nanotechnology 2013, 24, 255705

75

Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621-625.

76

Chen, C. C.; Maier, J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat. Energy 2018, 3, 102-108.

77

Bekaert, E.; Balaya, P.; Murugavel, S.; Maier, J.; Ménétrier, M. 6Li MAS NMR investigation of electrochemical lithiation of RuO2: Evidence for an interfacial storage mechanism. Chem. Mater. 2009, 21, 856-861.

78

Kim, J. H.; Byeon, M.; Jeong, Y. C.; Oh, J. Y.; Jung, Y.; Fechler, N.; Yang, S. J.; Park, C. R. Morphochemical imprinting of melamine cyanurate mesocrystals in glucose-derived carbon for high performance lithium ion batteries. J. Mater. Chem. A 2017, 5, 20635-20642.

File
12274_2019_2459_MOESM1_ESM.pdf (6.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 April 2019
Revised: 22 May 2019
Accepted: 05 June 2019
Published: 06 July 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by Inha University Research Grant.

Return