Journal Home > Volume 12 , Issue 8

In some cases, illumination of traditional thermal catalysts and tailored plasmonic photocatalysts may synergistically combine thermal and nonthermal mechanisms to enhance reaction rates and improve product selectivity at reduced temperatures. To understand how these attributes are achieved in plasmon-driven catalysis, these intertwined thermal and nonthermal effects must be untangled. Here, we show how a novel indirect illumination technique, in conjunction with precisely monitored thermal profiles of the catalyst, can confirm and clarify the role of nonthermal effects in plasmon-enhanced carbon dioxide methanation on a Rh/TiO2 photocatalyst. We find that the extracted nonthermal methane production rate has a linear dependence on the top surface temperature, distinctly different from an exponential dependence for thermal catalysis. We also find that the apparent quantum efficiency from the nonthermal contribution has no dependence on light intensity but maintains a linear dependence on top surface temperatures between 200 and 350 ℃. The clear exposition of nonthermal effects in the Rh/TiO2 plasmonic photocatalyst illustrates how this methodology may be applied for the quantitative evaluation of thermal and nonthermal light effects in other plasmon-enhanced catalytic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts

Show Author's information Xueqian Li1Henry O. Everitt2,3( )Jie Liu1( )
Department of Chemistry,Duke University,Durham, NC,27708,USA;
Army Combat Capabilities Development Command,Aviation & Missile Center,Redstone Arsenal, AL,35898,USA;
Department of Physics,Duke University,Durham, NC,27708,USA;

Abstract

In some cases, illumination of traditional thermal catalysts and tailored plasmonic photocatalysts may synergistically combine thermal and nonthermal mechanisms to enhance reaction rates and improve product selectivity at reduced temperatures. To understand how these attributes are achieved in plasmon-driven catalysis, these intertwined thermal and nonthermal effects must be untangled. Here, we show how a novel indirect illumination technique, in conjunction with precisely monitored thermal profiles of the catalyst, can confirm and clarify the role of nonthermal effects in plasmon-enhanced carbon dioxide methanation on a Rh/TiO2 photocatalyst. We find that the extracted nonthermal methane production rate has a linear dependence on the top surface temperature, distinctly different from an exponential dependence for thermal catalysis. We also find that the apparent quantum efficiency from the nonthermal contribution has no dependence on light intensity but maintains a linear dependence on top surface temperatures between 200 and 350 ℃. The clear exposition of nonthermal effects in the Rh/TiO2 plasmonic photocatalyst illustrates how this methodology may be applied for the quantitative evaluation of thermal and nonthermal light effects in other plasmon-enhanced catalytic reactions.

Keywords: carbon dioxide reduction, plasmonic photocatalysis, hot carriers, photothermal heating, rhodium nanoparticles

References(48)

1

Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.

2

Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710-3717.

3

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.

4

Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927-2954.

5

Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 2006, 106, 4301-4320.

6

Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett. 2014, 14, 5405-5412.

7

Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69-72.

8

Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116-128.

9

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-576.

10

Kamarudheen, R.; Castellanos, G. W.; Kamp, L. P. J.; Clercx, H. J. H.; Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon- driven nanoparticle syntheses. ACS Nano 2018, 8, 8447-8455.

11

Yang, H.; He, L. Q.; Hu, Y. W.; Lu, X. H.; Li, G. R.; Liu, B. J.; Ren, B.; Tong, Y. X.; Fang, P. P. Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462-11466.

12

Li, X. Q.; Zhang, X.; Everitt, H. O.; Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 2019, 19, 1706-1711.

13

Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714-1723.

14

Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 2017, 13, 1602583.

15

Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044-1050.

16

Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749-3753.

17

Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964-17972.

18

Lim, D. K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075-4079.

19

Li, H. G.; Rivallan, M.; Thibault-Starzyk, F.; Travert, A.; Meunier, F. C. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Phys. Chem. Chem. Phys. 2013, 15, 7321-7327.

20

Sivan, Y.; Chu, S. W. Nonlinear plasmonics at high temperatures. Nanophotonics 2017, 6, 317-328.

21

Sivan, Y.; Un, I. W.; Dubi, Y. Assistance of metal nanoparticles in photocatalysis-nothing more than a classical heat source. Faraday Discuss. 2019, 214, 215-233.

22

Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272-2280.

23

Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-38.

24

Hartland, G. V.; Besteiro, L. V.; Johns, P.; Govorov, A. O. What's so hot about electrons in metal nanoparticles? ACS Energy Lett. 2017, 2, 1641-1653.

25

Zhang, X.; Li, P.; Barreda, Á.; Gutiérrez, Y.; González, F.; Moreno, F.; Everitt, H. O.; Liu, J. Size-tunable rhodium nanostructures for wavelength- tunable ultraviolet plasmonics. Nanoscale Horiz. 2016, 1, 75-80.

26

Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; González, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606-19615.

27

Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J. Photochem. Photobiol. A 1999, 126, 117-123.

28

Rasko, J.; Solymosi, F. Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J. Phys. Chem. 1994, 98, 7147-7152.

29

Solymosi, F.; Erdöhelyi, A.; Bánsági, T. Methanation of CO2 on supported rhodium catalyst. J. Catal. 1981, 68, 371-382.

30

Solymosi, F.; Tombácz, I. Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal. Lett. 1994, 27, 61-65.

31

Shastri, A. G.; Datye, A. K.; Schwank, J. Gold-titania interactions: Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. J. Catal. 1984, 87, 265-275.

32

Novák, É.; Fodor, K.; Szailer, T.; Oszkć, A.; Erdöhelyi, A. CO2 hydrogenation on Rh/TiO2 previously reduced at different temperatures. Top. Catal. 2002, 20, 107-117.

33

Avanesian, T.; Gusmão, G. S.; Christopher, P. Mechanism of CO2 reduction by H2 on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts. J. Catal. 2016, 343, 86-96.

34

Karelovic, A.; Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 2013, 301, 141-153.

35

Jacquemin, M.; Beuls, A.; Ruiz, P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catal. Today 2010, 157, 462-466.

36

Williams, K. J.; Boffa, A. B.; Salmeron, M.; Bell, A. T.; Somorjai, G. A. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers. Catal. Lett. 1991, 9, 415-426.

37

Henderson, M. A.; Worley, S. D. An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. J. Phys. Chem. 1985, 89, 1417-1423.

38

Sexton, B. A.; Somorjai, G. A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions. J. Catal. 1977, 46, 167-189.

39

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

40

Schaaf, T.; Grünig, J.; Schuster, M. R.; Rothenfluh, T.; Orth, A. Methanation of CO2-storage of renewable energy in a gas distribution system. Energy Sustain. Soc. 2014, 4, 2.

41

Halabi, M. H.; de Croon, M. H. J. M.; van der Schaaf, J.; Cobden, P. D.; Schouten, J. C. Low temperature catalytic methane steam reforming over ceria-zirconia supported rhodium. Appl. Catal. A Gen. 2010, 389, 68-79.

42

Mark, M. F.; Maier, W. F. CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal. 1996, 164, 122-130.

43

Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal. Lett. 1994, 25, 265-270.

44

Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467-472.

45

Baffou, G.; Quidant, R.; García de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 2010, 4, 709-716.

46

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.

47

Olsen, T.; Schiøtz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 2009, 103, 238301.

48

Tesema, T. E.; Kafle, B.; Habteyes, T. G. Plasmon-driven reaction mechanisms: Hot electron transfer versus plasmon-pumped adsorbate excitation. J. Phys. Chem. C 2019, 123, 8469-8483.

File
12274_2019_2457_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 February 2019
Revised: 05 May 2019
Accepted: 05 June 2019
Published: 14 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This research is supported by the National Science Foundation (CHE-1565657) and the Army Research Office (Award W911NF- 15-1-0320). X. L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Return