Journal Home > Volume 12 , Issue 8

The screw dislocations are intriguing defects that are often observed in natural and artificial materials. The dislocation spirals break the reflection and inversion symmetries of the lattices and modify the interlayer coupling in layer-structured materials, inducing additional complexity in layer stacking and thus novel properties in materials. Here, we report on the interlayer coupling of two-dimensional (2D) MoSe2 flakes with screw dislocations by atomic force microscopy (AFM), Raman spectra and photoluminescence (PL) spectra. By controlling the supersaturation conditions, 2D MoSe2 flakes with screw dislocations are grown on amorphous SiO2 substrates by chemical vapor deposition (CVD). AFM measurements reveal that the interlayer spacing in such 2D MoSe2 flakes with screw dislocation is slightly widened with respect to the normal AA- or AB-stacked ones due to the presence of the screw dislocations. Raman and PL spectra show that the interlayer coupling is weaker and thus the band gap is wider than that in the normal AA-or AB-stacked ones. Our work demonstrates that the interlayer coupling of 2D transition metal dichalcogenides (TMDCs) flakes can be tuned by the induction of screw dislocations, which is very helpful for developing novel catalysts and electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations

Show Author's information Xiangzhuo Wang1Huixia Yang1,2Rong Yang3Qinsheng Wang1,2Jingchuan Zheng1Lu Qiao1Xianglin Peng1Yongkai Li1Dongyun Chen1Xiaolu Xiong1,2Junxi Duan1,2Guangyu Zhang3Jie Ma1Junfeng Han1,2( )Wende Xiao1,2( )Yugui Yao1,2
Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE),Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology,Beijing,100081,China;
Micronano Center,Beijing Institute of Technology,Beijing,100081,China;
Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China;

Abstract

The screw dislocations are intriguing defects that are often observed in natural and artificial materials. The dislocation spirals break the reflection and inversion symmetries of the lattices and modify the interlayer coupling in layer-structured materials, inducing additional complexity in layer stacking and thus novel properties in materials. Here, we report on the interlayer coupling of two-dimensional (2D) MoSe2 flakes with screw dislocations by atomic force microscopy (AFM), Raman spectra and photoluminescence (PL) spectra. By controlling the supersaturation conditions, 2D MoSe2 flakes with screw dislocations are grown on amorphous SiO2 substrates by chemical vapor deposition (CVD). AFM measurements reveal that the interlayer spacing in such 2D MoSe2 flakes with screw dislocation is slightly widened with respect to the normal AA- or AB-stacked ones due to the presence of the screw dislocations. Raman and PL spectra show that the interlayer coupling is weaker and thus the band gap is wider than that in the normal AA-or AB-stacked ones. Our work demonstrates that the interlayer coupling of 2D transition metal dichalcogenides (TMDCs) flakes can be tuned by the induction of screw dislocations, which is very helpful for developing novel catalysts and electronic devices.

Keywords: band gap, transition-metal dichalcogenides, molybdenum selenide, screw dislocations, interlayer coupling

References(36)

1

Jie, W. J.; Yang, Z. B.; Zhang, F.; Bai, G. X.; Leung, C. W.; Hao, J. H. Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating. ACS Nano 2017, 11, 6950-6958.

2

Du, L. J.; Jia, Z. Y.; Zhang, Q.; Zhang, A. M.; Zhang, T. T.; He, R.; Yang, R.; Shi, D. X.; Yao, Y. G.; Xiang, J. Y. et al. Electronic structure-dependent magneto-optical Raman effect in atomically thin WS2. 2D Mater. 2018, 5, 035028.

3

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.

4

Huang, J.; Yang, L.; Liu, D.; Chen, J. J.; Fu, Q.; Xiong, Y. J.; Lin, F.; Xiang, B. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 2015, 7, 4193-4198.

5

Zhang, E. Z.; Chen, R.; Huang, C.; Yu, J. H.; Zhang, K. T.; Wang, W. Y.; Liu, S. S.; Ling, J. W.; Wan, X. G.; Lu, H. Z. et al. Tunable positive to negative magnetoresistance in atomically thin WTe2. Nano Lett. 2017, 17, 878-885.

6

Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 2014, 14, 6418-6423.

7

Kumar, P.; Viswanath, B. Effect of sulfur evaporation rate on screw dislocation driven growth of MoS2 with high atomic step density. Cryst. Growth Des. 2016, 16, 7145-7154.

8

Fan, X. P.; Zhao, Y. Z.; Zheng, W. H.; Li, H. L.; Wu, X. P.; Hu, X. L.; Zhang, X. H.; Zhu, X. L.; Zhang, Q. L.; Wang, X. et al. Controllable growth and formation mechanisms of dislocated WS2 spirals. Nano Lett. 2018, 18, 3885-3892.

9

Fan, X. P.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Xu, T.; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 2017, 11, 4892-4898.

10

Shearer, M. J.; Samad, L.; Zhang, Y.; Zhao, Y. Z.; Puretzky, A.; Eliceiri, K. W.; Wright, J. C.; Hamers, R. J.; Jin, S. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 2017, 139, 3496-3504.

11

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

12

Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.

13

Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949-8955.

14

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.

15

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.

16

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582-8590.

17

Zheng, B. J.; Chen, Y. F.; Qi, F.; Wang, X. Q.; Zhang, W. L.; Li, Y. R.; Li, X. S. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 2017, 4, 025092.

18

Chen, M. W.; Ovchinnikov, D.; Lazar, S.; Pizzochero, M.; Whitwick, M. B.; Surrente, A.; Baranowski, M.; Sanchez, O. L.; Gillet, P.; Plochocka, P. et al. Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy. ACS Nano 2017, 11, 6355-6361.

19

Yang, Y. C.; Li, X.; Wen, M. R.; Hacopian, E.; Chen, W. B.; Gong, Y. J.; Zhang, J.; Li, B.; Zhou, W.; Ajayan, P. M. et al. Brittle fracture of 2D MoSe2. Adv. Mater. 2017, 29, 1604201.

20

Baek, J.; Yin, D. M.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Hong, S.; Kim, S. M.; Hong, Y. K.; Hur, J. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861-1871.

21

Zhu, C. Y.; Huang, Y.; Xu, F.; Gao, P.; Ge, B. H.; Chen, J.; Zeng, H. B.; Sutter, E.; Sutter, P.; Sun, L. T. Defect-laden MoSe2 quantum dots made by turbulent shear mixing as enhanced electrocatalysts. Small 2017, 13, 1700565.

22

Dai, T. J.; Liu, Y. C.; Fan, X. D.; Liu, X. Z.; Xie, D.; Li, Y. R. Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector. Nanophotonics 2018, 7, 1959-1969.

23

Masurkar, N.; Thangavel, N. K.; Arava, L. M. R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 27771-27779.

24

Hu, S.; Jiang, Q. Q.; Ding, S. P.; Liu, Y.; Wu, Z. Z.; Huang, Z. X.; Zhou, T. F.; Guo, Z. P.; Hu, J. C. Construction of hierarchical MoSe2 hollow structures and its effect on electrochemical energy storage and conversion. ACS Appl. Mater. Interfaces 2018, 10, 25483-25492.

25

Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500-5508.

26

Huang, S. X.; Liang, L. B.; Ling, X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016, 16, 1435-1444.

27

Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736-2744.

28

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041-4050.

29

Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511-517.

30

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

31

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

32

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

33

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

34

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

35

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

36

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

File
12274_2019_2456_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2019
Revised: 21 May 2019
Accepted: 04 June 2019
Published: 18 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11574029, 51661135026, 21773008, 11704027, 11574361, and 11834017), the National Key R & D Program of China (Nos. 2016YFA0300600 and 2016YFA0300904), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000), the Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH004) and the Youth Innovation Promotion Association CAS (No. 2018013).

Return