Journal Home > Volume 12 , Issue 9

Na-ion batteries (NIBs) have attracted significant attention owing to Na being an abundant resource that is uniformly distributed in the Earth's crust. Several 3d transition metal (TM) ions have been thoroughly investigated as charge compensators in single or multiple composition systems to enhance the electrochemical performance of cathodes for the practical applications. In this review, the composition-structure-property relationship of Ni-based cathodes has been reviewed as a design perspective for NIB's cathodes. The typical Ni-based cathode materials have been systematically summarized and comparatively analyzed, and it is demonstrated that Ni ions can be used to provide charge compensation. Moreover, Ni-based cathodes present high reversible capacity owing to the multi-electron redox reactions and suitable redox potential of Ni-ions redox. However, considering the abundance, cost, and hygroscopic properties of Ni element, the content of 0.15–0.35 per formula can be optimal for enhancing the performance of cathodes. Lastly, further perspectives on designing Ni-containing cathodes, including Ni-rich layered cathodes, have been discussed, which could promote the practical applications of NIBs for grid-scale energy storage in future.


menu
Abstract
Full text
Outline
About this article

Ni-based cathode materials for Na-ion batteries

Show Author's information Chenglong Zhao1,2Yaxiang Lu1,2( )Liquan Chen1Yong-Sheng Hu1,2,3( )
Key Laboratory for Renewable EnergyBeijing Key Laboratory for New Energy Materials and DevicesBeijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
Yangtze River Delta Physics Research Center Co. LtdLiyang213300China

Abstract

Na-ion batteries (NIBs) have attracted significant attention owing to Na being an abundant resource that is uniformly distributed in the Earth's crust. Several 3d transition metal (TM) ions have been thoroughly investigated as charge compensators in single or multiple composition systems to enhance the electrochemical performance of cathodes for the practical applications. In this review, the composition-structure-property relationship of Ni-based cathodes has been reviewed as a design perspective for NIB's cathodes. The typical Ni-based cathode materials have been systematically summarized and comparatively analyzed, and it is demonstrated that Ni ions can be used to provide charge compensation. Moreover, Ni-based cathodes present high reversible capacity owing to the multi-electron redox reactions and suitable redox potential of Ni-ions redox. However, considering the abundance, cost, and hygroscopic properties of Ni element, the content of 0.15–0.35 per formula can be optimal for enhancing the performance of cathodes. Lastly, further perspectives on designing Ni-containing cathodes, including Ni-rich layered cathodes, have been discussed, which could promote the practical applications of NIBs for grid-scale energy storage in future.

Keywords: charge compensation, Na-ion battery, Ni-based cathode, Ni2+/Ni3+/Ni4+, high specific capacity

References(128)

1

Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130-151.

2

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.

3

Wu, F. X.; Zhao, C. L.; Chen, S. Q.; Lu, Y. X.; Hou, Y. L.; Hu, Y. S.; Maier, J.; Yu, Y. Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960-973.

4

Wang, Q.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J. et al. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.

5

Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

6

Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium-ion battery materials. Small Methods 2017, 1, 1600063.

7

Zhao, C. L.; Lu, Y. X.; Yue, J. M.; Pan, D.; Qi, Y. R.; Hu, Y. S.; Chen, L. Q. Advanced Na metal anodes. J. Energy Chem. 2018, 27, 1584-1596.

8

Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81-102.

9

Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An overview of mixed polyanionic cathode materials for sodium-ion batteries. Small Methods 2019, 3, 1800253.

10

Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928-6933.

11

Zhao, C. L.; Wang, Q. D.; Lu, Y. X.; Hu, Y. S.; Li, B. H.; Chen, L. Q. Review on anionic redox for high-capacity lithium-and sodium-ion batteries. J. Phys. D: Appl. Phys. 2017, 50, 183001.

12

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373-386.

13

Xu, J.; Sun, M. L.; Qiao, R. M.; Renfrew, S. E.; Ma, L.; Wu, T. P.; Hwang, S.; Nordlund, D.; Su, D.; Amine, K. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 2018, 9, 947.

14

Zhao, C. L.; Wang, Q. D.; Lu, Y. X.; Jiang, L. W.; Liu, L. L.; Yu, X. Q.; Chen, L. Q.; Li, B. H.; Hu, Y. S. Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides. Energy Storage Mater., in press, DOI: 10.1016/j.ensm.2018.10.025.

15

Wang, Q. D.; Yang, W.; Kang, F. Y.; Li, B. H. Na2Mn0.33+Mn2.74+O6.85: A cathode with simultaneous cationic and anionic redox in Na-ion battery. Energy Storage Mater. 2018, 14, 361-366.

16

Clarke, S. J.; Fowkes, A. J.; Harrison, A.; Ibberson, R. M.; Rosseinsky, M. J. Synthesis, structure, and magnetic properties of NaTiO2. Chem. Mater. 1998, 10, 372-384.

17

Maazaz, A.; Delmas, C.; Hagenmuller, P. A study of the NaxTiO2 system by electrochemical deintercalation. J. Inclusion Phenom. 1983, 1, 45-51.

18

Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. NaTiO2: A layered anode material for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 195-202.

19

Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81-85.

20

Guo, S. H.; Yi, J.; Sun, Y.; Zhou, H. S. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978-3006.

21

Zhao, C. L.; Avdeev, M.; Chen, L. Q.; Hu, Y. S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 7056-7060.

22

Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

23

Wang, Y. S.; Liu, J.; Lee, B.; Qiao, R. M.; Yang, Z. Z.; Xu, S. Y.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Yang, W. L. et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 2015, 6, 6401.

24

Tsuchiya, Y.; Takanashi, K.; Nishinobo, T.; Hokura, A.; Yonemura, M.; Matsukawa, T.; Ishigaki, T.; Yamanaka, K.; Ohta, T.; Yabuuchi, N. Layered NaxCrxTi1-xO2 as bifunctional electrode materials for rechargeable sodium batteries. Chem. Mater. 2016, 28, 7006-7016.

25

Xia, X.; Dahn, J. R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 2012, 15, A1-A4.

26

Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2019-2026.

27

Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C 2015, 119, 166-175.

28

Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid-State Lett. 2011, 14, A75-A78.

29

Hamani, D.; Ati, M.; Tarascon, J. M.; Rozier, P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem. Commun. 2011, 13, 938-941.

30

Didier, C.; Guignard, M.; Suchomel, M. R.; Carlier, D.; Darriet, J.; Delmas, C. Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2. Chem. Mater. 2016, 28, 1462-1471.

31

Didier, C.; Guignard, M.; Darriet, J.; Delmas, C. O'3-NaxVO2 system: A superstructure for Na1/2VO2. Inorg. Chem. 2012, 51, 11007-11016.

32

Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74-80.

33

Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

34

Cao, M. H.; Wang, Y.; Shadike, Z.; Yue, J. L.; Hu, E. Y.; Bak, S. M.; Zhou, Y. N.; Yang, X. Q.; Fu, Z. W. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries. J. Mater. Chem. A 2017, 5, 5442-5448.

35

Lu, Z. H.; Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3-x/3Mn2/3-2x/3]O2 (x = 1/3) cathode material. J. Electrochem. Soc. 2003, 150, A1044-A1051.

36

Balasubramanian, M.; McBreen, J.; Davidson, I. J.; Whitfield, P. S.; Kargina, I. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J. Electrochem. Soc. 2002, 149, A176-A184.

37

Zhu, X. B.; Lin, T. E.; Manning, E.; Zhang, Y. C.; Yu, M. M.; Zuo, B.; Wang, L. Z. Recent advances on Fe-and Mn-based cathode materials for lithium and sodium ion batteries. J. Nanopart. Res. 2018, 20, 160.

38

Clément, R. J.; Bruce, P. G.; Grey, C. P. Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J. Electrochem. Soc. 2015, 162, A2589-A2604.

39

Billaud, J.; Clément, R. J.; Armstrong, A. R.; Canales-Vázquez, J.; Rozier, P.; Grey, C. P.; Bruce, P. G. β-NaMnO2: A high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 2014, 136, 17243-17248.

40

Ma, X. H.; Chen, H. L.; Ceder, G. Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 2011, 158, A1307-A1312.

41

Jo, I. H.; Ryu, H. S.; Gu, D. G.; Park, J. S.; Ahn, I. S.; Ahn, H. J.; Nam, T. H.; Kim, K. W. The effect of electrolyte on the electrochemical properties of Na/α-NaMnO2 batteries. Mater. Res. Bull. 2014, 58, 74-77.

42

Clément, R. J.; Middlemiss, D. S.; Seymour, I. D.; Ilott, A. J.; Grey, C. P. Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO2 Na-ion battery cathode: An NMR and first-principles density functional theory approach. Chem. Mater. 2016, 28, 8228-8239.

43

Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. P'2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property. Chem. Mater. 2017, 29, 8958-8962.

44

Choi, J. U.; Park, Y. J.; Jo, J. H.; Kuo, L. Y.; Kaghazchi, P.; Myung, S. T. Unraveling the role of earth-abundant Fe in the suppression of Jahn-Teller distortion of P'2-type Na2/3MnO2: Experimental and theoretical studies. ACS Appl. Mater. Interfaces 2018, 10, 40978-40984.

45

Jiang, L. W.; Lu, Y. X.; Wang, Y. S.; Liu, L. L.; Qi, X. G.; Zhao, C. L.; Chen, L. Q.; Hu. Y. S. A high-temperature β-phase NaMnO2 stabilized by Cu doping and its Na storage properties. Chin. Phys. Lett. 2018, 35, 048801.

46

Konarov, A.; Choi, J. U.; Bakenov, Z.; Myung, S. T. Revisit of layered sodium manganese oxides: Achievement of high energy by Ni incorporation. J. Mater. Chem. A 2018, 6, 8558-8567.

47

Kumakura, S.; Tahara, Y.; Kubota, K.; Chihara, K.; Komaba, S. Sodium and manganese stoichiometry of P2-type Na2/3MnO2. Angew. Chem., Int. Ed. 2016, 55, 12760-12763.

48

Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J. J.; Johnson, C. S. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem. Mater. 2015, 27, 6755-6764.

49

Zhao, J.; Zhao, L. W.; Dimov, N.; Okada, S.; Nishida, T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077-A3081.

50

Yabuuchi, N.; Yoshida, H.; Komaba, S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 2012, 80, 716-719.

51

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512-517.

52

Olszewski, W.; Ávila Pérez, M.; Marini, C.; Paris, E.; Wang, X. F.; Iwao, T.; Okubo, M.; Yamada, A.; Mizokawa, T.; Saini, N. L. et al. Temperature dependent local structure of NaxCoO2 cathode material for rechargeable sodium-ion batteries. J. Phys. Chem. C 2016, 120, 4227-4232.

53

Delmas, C.; Braconnier, J. J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3-4, 165-169.

54

Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Electrochemical properties of NaxCoO2 (x ~ 0.71) cathode for rechargeable sodium-ion batteries. Ceram. Int. 2014, 40, 2411-2417.

55

Bhide, A.; Hariharan, K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 2011, 192, 360-363.

56

Vassilaras, P.; Ma, X. H.; Li, X.; Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 2013, 160, A207-A211.

57

Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2014, 23, 118202.

58

Mu, L. Q.; Hu, Y. S.; Chen, L. Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2015, 24, 038202.

59

Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A. M.; Rozier, P.; Tarascon, J. M. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 2018, 8, 1802379.

DOI
60

Wu, X. H.; Xu, G. L.; Zhong, G. M.; Gong, Z. L.; McDonald, M. J.; Zheng, S. Y.; Fu, R. Q.; Chen, Z. H.; Amine, K.; Yang, Y. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22227-22237.

61

Park, K.; Yu, B. C.; Goodenough, J. B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery. Chem. Mater. 2015, 27, 6682-6688.

62

Wang, L. G.; Wang, J. J.; Zhang, X. Y.; Ren, Y.; Zuo, P. J.; Yin, G. P.; Wang, J. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy 2017, 34, 215-223.

63

Zentgraf, H.; Hoppe, R. Über neue oxoniccolate: Zur kenntnis von Na2[NiO2]. Z. Anorg. Allg. Chem. 1980, 462, 71-79.

64

Dick, S.; Müller, M.; Preissinger, F.; Zeiske, T. The structure of monoclinic NaNiO2 as determined by powder X-ray and neutron scattering. Powder Diffr. 1997, 12, 239-241.

65

Han, M. H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 2014, 258, 266-271.

66

Shin, Y. J.; Yi, M. Y. Preparation and structural properties of layer-type oxides NaxNix/2Ti1-x/2O2 (0.60 ≤ x ≤ 1.0). Solid State Ionics 2000, 132, 131-141.

67

Shanmugam, R.; Lai, W. Na2/3Ni1/3Ti2/3O2: "Bi-functional" electrode materials for Na-ion batteries. ECS Electrochem. Lett. 2014, 3, A23-A25.

68

Alvarado, J.; Ma, C. Z.; Wang, S.; Nguyen, K.; Kodur, M.; Meng, Y. S. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 26518-26530.

69

Risthaus, T.; Zhou, D.; Cao, X.; He, X.; Qiu, B.; Wang, J.; Zhang, L.; Liu, Z. P.; Paillard, E.; Schumacher, G. et al. A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. J. Power Sources 2018, 395, 16-24.

70

Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225-A1229.

71

Dang, R. B.; Chen, M. M.; Li, Q.; Wu, K.; Lee, Y. L.; Hu, Z. B.; Xiao, X. L. Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: Suppressing Na+/vacancy ordering and P2-O2 phase transition. ACS Appl. Mater. Interfaces 2018, 11, 856-864.

72

Yoda, Y.; Kubota, K.; Isozumi, H.; Horiba, T.; Komaba, S. Poly-γ-glutamate binder to enhance electrode performances of P2-Na2/3Ni1/3Mn2/3O2 for Na-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 10986-10997.

73

Lu, Z. H.; Donaberger, R. A.; Dahn, J. R. Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 structures. Chem. Mater. 2000, 12, 3583-3590.

74

Lu, Z. H.; Dahn, J. R. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2. Chem. Mater. 2001, 13, 1252-1257.

75

Gutierrez, A.; Dose, W. M.; Borkiewicz, O.; Guo, F. M.; Avdeev, M.; Kim, S.; Fister, T. T.; Ren, Y.; Bareño, J.; Johnson, C. S. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J. Phys. Chem. C 2018, 122, 23251-23260.

76

Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem. Commun. 2014, 50, 3677-3680.

77

Shanmugam, R.; Lai, W. Study of transport properties and interfacial kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0, 1/3) as electrodes for Na-ion batteries. J. Electrochem. Soc. 2015, 162, A8-A14.

78

Gupta, A.; Buddie Mullins, C.; Goodenough, J. B. Na2Ni2TeO6: Evaluation as a cathode for sodium battery. J. Power Sources 2013, 243, 817-821.

79

Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. A new family of fast sodium ion conductors: Na2M2TeO6 (M = Ni, Co, Zn, Mg). Chem. Mater. 2011, 23, 1174-1181.

80

Ramasamy, H. V.; Kaliyappan, K.; Thangavel, R.; Aravindan, V.; Kang, K.; Kim, D. U.; Park, Y. I.; Sun, X. L.; Lee, Y. S. Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J. Mater. Chem. A 2017, 5, 13842.

81

Zuo, W. H.; Liu, R.; Ortiz, G. F.; Rubio, S.; Chyrka, T.; Lavela, P.; Zheng, S. Y.; Tirado, J. L.; Wang, D. H.; Yang, Y. Sodium storage behavior of Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. J. Power Sources 2018, 400, 317-324.

82

Zhao, W. W.; Kirie, H.; Tanaka, A.; Unno, M.; Yamamoto, S.; Noguchi, H. Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater. Lett. 2014, 135, 131-134.

83

Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv. Energy Mater. 2018, 8, 1703415.

84

Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851-16855.

85

Doubaji, S.; Ma, L.; Asfaw, H. D.; Izanzar, I.; Xu, R.; Alami, J.; Lu, J.; Wu, T. P.; Amine, K.; Edstrom, K. et al. On the P2-NaxCo1-y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: Synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl. Mater. Interfaces 2018, 10, 488-501.

86

Yang, Q.; Wang, P. F.; Guo, J. Z.; Chen, Z. M.; Pang, W. L.; Huang, K. C.; Guo, Y. G.; Wu, X. L.; Zhang, J. P. Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2-O2 phase transition toward high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 34272-34282.

87

Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X. Q.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X. Q.; Grey, C. P.; Meng, Y. S. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1-y-z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem. Mater. 2014, 26, 1260-1269.

DOI
88

Yu, H. J.; Guo, S. H.; Zhu, Y. B.; Ishida, M.; Zhou, H. S. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Commun. 2014, 50, 457-459.

89

Sathiya, M.; Jacquet, Q.; Doublet, M. L.; Karakulina, O. M.; Hadermann, J.; Tarascon, J. M. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv. Energy Mater. 2018, 8, 1702599.

90

Wang, P. F.; Xin, H. S.; Zuo, T. T.; Li, Q. H.; Yang, X. A.; Yin, Y. X.; Gao, X. K.; Yu, X. Q.; Guo, Y. G. An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angew. Chem., Int. Ed. 2018, 57, 8178-8183.

91

Goodenough, J. B. Mapping of redox energies. Mol. Cryst. Liq. Cryst. Sci. Technol. Sec. A. Mol. Cryst. Liq. Cryst. 1998, 311, 1-14.

92

Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 2012, 51, 6211-6220.

93

Zheng, L. T.; Li, L. J.; Shunmugasundaram, R.; Obrovac, M. N. Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 38246-38254.

94

Chen, J.; Li, L. J.; Wu, L.; Yao, Q.; Yang, H. P.; Liu, Z. S.; Xia, L. F.; Chen, Z. Y.; Duan, J. F.; Zhong, S. K. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. J. Power Sources 2018, 406, 110-117.

95

Yuan, D. D.; Wang, Y. X.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 8585-8591.

96

Zheng, L. T.; Obrovac, M. N. Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries. Electrochim. Acta 2017, 233, 284-291.

97

Deng, C. J.; Skinner, P.; Liu, Y. Z.; Sun, M. L.; Tong, W.; Ma, C. R.; Lau, M. L.; Hunt, R.; Barnes, P.; Xu, J. et al. Li-substituted layered spinel cathode material for sodium ion batteries. Chem. Mater. 2018, 30, 8145-8154.

98

Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.

99

Wang, H. B.; Gu, M. Y.; Jiang, J. Y.; Lai, C.; Ai, X. P. An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries. J. Power Sources 2016, 327, 653-657.

100

Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301-6306.

101

You, Y.; Kim, S. O.; Manthiram, A. A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition. Adv. Energy Mater. 2017, 7, 1601698.

102

Bhange, D. S.; Ali, G.; Kim, D. H.; Anang, D. A.; Shin, T. J.; Kim, M. G.; Kang, Y. M.; Chung, K. Y.; Nam, K. W. Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 1300-1310.

103

Wang, P. F.; Guo, Y. J.; Duan, H.; Zuo, T. T.; Hu, E. Y.; Attenkofer, K.; Li, H. L.; Zhao, X. S.; Yin, Y. X.; Yu, X. Q. et al. Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries. ACS Energy Lett. 2017, 2, 2715-2722.

104

Ma, J.; Bo, S. H.; Wu, L. J.; Zhu, Y. M.; Grey, C. P.; Khalifah, P. G. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries. Chem. Mater. 2015, 27, 2387-2399.

105

Aguesse, F.; Lopez del Amo, J. M.; Otaegui, L.; Goikolea, E.; Rojo, T.; Singh, G. Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery. J. Power Sources 2016, 336, 186-195.

106

Dai, H.; Yang, C. H.; Ou, X.; Liang, X. H.; Xue, H.; Wang, W. X.; Xu, G. F. Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation. Electrochim. Acta 2017, 257, 146-154.

107

Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K. et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909-4918.

108

Li, X.; Wu, D.; Zhou, Y. N.; Liu, L.; Yang, X. Q.; Ceder, G. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem. Commun. 2014, 49, 51-54.

109

Wang, H.; Liao, X. Z.; Yang, Y.; Yan, X. M.; He, Y. S.; Ma, Z. F. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A565-A570.

110

Xie, Y. Y.; Wang, H.; Xu, G. L.; Wang, J. J.; Sheng, H. P.; Chen, Z. H.; Ren, Y.; Sun, C. J.; Wen, J. G.; Wang, J. et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv. Energy Mater. 2016, 6, 1601306.

111

Yao, H. R.; Wang, P. F.; Gong, Y.; Zhang, J. N.; Yu, X. Q.; Gu, L.; Ouyang, C. Y.; Yin, Y. X.; Hu, E. Y.; Yang, X. Q. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 8440-8443.

112

Vassilaras, P.; Kwon, D. H.; Dacek, S. T.; Shi, T.; Seo, D. H.; Ceder, G.; Kim, J. C. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. J. Mater. Chem. A 2017, 5, 4596-4606.

113

Thorne, J. S.; Zheng, L. T.; Lee, C. L. D.; Dunlap, R. A.; Obrovac, M. N. Synthesis and electrochemistry of O3-type NaFeO2-NaCo0.5Ni0.5O2 solid solutions for Na-ion positive electrodes. ACS Appl. Mater. Interfaces 2018, 10, 22013-22022.

114

Vassilaras, P.; Toumar, A. J.; Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 2014, 38, 79-81.

115

Hwang, J. Y.; Yoon, C. S.; Belharouak, I.; Sun, Y. K. A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 17952-17959.

116

Zhou, P. F.; Liu, X. L.; Weng, J. Y.; Wang, L.; Wu, X. Z.; Miao, Z. C.; Zhao, J. P.; Zhou, J.; Zhuo, S. P. Synthesis, structure, and electrochemical properties of O'3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 657-663.

117

Kubota, K.; Asari, T.; Yoshida, H.; Yaabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6047-6059.

118

You, Y.; Dolocan, A.; Li, W. D.; Manthiram, A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett. 2019, 19, 182-188.

119

Hwang, J. Y.; Oh, S. M.; Myung, S. T.; Chung, K. Y.; Belharouak, I.; Sun, Y. K. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 2015, 6, 6865.

120

Hwang, J. Y.; Myung, S. T.; Choi, J. U.; Yoon, C. S.; Yashiro, H.; Sun, Y. K. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23671-23680.

121

Sun, H. H.; Hwang, J. Y.; Yoon, C. S.; Heller, A.; Mullins, C. B. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode for sodium-ion batteries. ACS Nano 2018, 12, 12912-12922.

122

Ji, Z.; Han, B.; Liang, H. T.; Zhou, C. G.; Gao, Q.; Xia, K. S.; Wu, J. P. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 33619-33625.

123

Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B. S.; Geiger, D.; Jeong, S.; Kaiser, U.; Passerini, S. Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. NPG Asia Mater. 2017, 9, e370.

124

Kundu, D.; Tripathi, R.; Popov, G.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis, structure, and Na-ion migration in Na4NiP2O7F2: A prospective high voltage positive electrode material for the Na-ion battery. Chem. Mater. 2015, 27, 885-891.

125

Ma, X. H.; Wei, Y. Y.; Wu, Y. D.; Wang, J.; Jia, W.; Zhou, J. H.; Zi, Z. F.; Dai, J. M. High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 2019, 297, 392-397.

126

Marzak, P.; Yun, J.; Dorsel, A.; Kriele, A.; Gilles, R.; Schneider, O.; Bandarenka, A. S. Electrodeposited Na2Ni[Fe(CN)6] thin-film cathodes exposed to simulated aqueous Na-ion battery conditions. J. Phys. Chem. C 2018, 122, 8760-8768.

127

Duffort, V.; Talaie, E.; Black, R.; Nazar, L. F. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions. Chem. Mater. 2015, 27, 2515-2524.

128

Zheng, L. T.; Li, J. R.; Obrovac, M. N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-xCuxMn2/3O2 in sodium cells. Chem. Mater. 2017, 29, 1623-1631.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 April 2019
Revised: 30 May 2019
Accepted: 31 May 2019
Published: 27 June 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2016YFB0901500), the National Natural Science Foundation of China (Nos. 51725206 and 51421002), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21070500), Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (No. L182056) and Beijing Municipal Science and Technology Commission (No. Z181100004718008). C. L. Z. also thanks to the State Scholarship Fund of China Scholarship Council (CSC).

Return