Journal Home > Volume 12 , Issue 8

Carbon nitride nanoparticles (CNNPs) have been employed as fluorescent sensing tools owing to their unique features, e.g. low cost production, high stability in water and high photoluminescence quantum yield. Here, an easy and versatile synthetic approach was exploited to design fluorescent nanoparticles with surface functionalities suitable for covalent binding to bioligands. High hydrophilic, brightly fluorescent CNNPs, rich of superficial amines, were obtained from the thermal condensation of urea and lysine (CNNPLys) and by tuning the precursor ratio and the heating time. Structure and size of the functionalized nanoparticles were characterized through infrared (IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Their optical properties were studied by ultravioletɃvisible (UVɃVis) and fluorescence spectroscopy. The superficial primary amino groups, furnished by the lysine co-precursor, enabled for covalently linking CNNPLys to model proteins. The CNNPLys-protein conjugates excited under UV irradiation emit in the 400Ƀ450 nm visible range (quantum yield 24%). The applicability of CNNPLys as novel fluorescent probes was demonstrated by a fluorescence quenching assay, in which gold nanoparticles (GNPs) were attached to Staphylococcal protein A and employed to quench the CNNPLys fluorescence by Forster resonant energy transfer (FRET). The quenching occurred upon formation of the specific binding between the GNP-linked protein A and CNNPLys-tagged immunoglobulins, while the inhibition of the binding resulted in the recovery of CNNPLys luminescence. The synthetic strategy, based on combining a pconjugated polymerq-forming unit (urea) and a co-precursor able to provide the desired functional group (lysine), allows designing innovative materials for the development of new generation fluorescence biosensors in which easily functionalized fluorophores are needed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amine-rich carbon nitride mnanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay

Show Author's information Gabriele CapilliSimone CavaleraLaura Anfossi( )Cristina GiovannoliMarco Minella( )Claudio BaggianiClaudio Minero
Department of Chemistry and NIS Center of Excellence,University of Torino,10125,Torino, Italy;

Present address: Mining & Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada

Abstract

Carbon nitride nanoparticles (CNNPs) have been employed as fluorescent sensing tools owing to their unique features, e.g. low cost production, high stability in water and high photoluminescence quantum yield. Here, an easy and versatile synthetic approach was exploited to design fluorescent nanoparticles with surface functionalities suitable for covalent binding to bioligands. High hydrophilic, brightly fluorescent CNNPs, rich of superficial amines, were obtained from the thermal condensation of urea and lysine (CNNPLys) and by tuning the precursor ratio and the heating time. Structure and size of the functionalized nanoparticles were characterized through infrared (IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Their optical properties were studied by ultravioletɃvisible (UVɃVis) and fluorescence spectroscopy. The superficial primary amino groups, furnished by the lysine co-precursor, enabled for covalently linking CNNPLys to model proteins. The CNNPLys-protein conjugates excited under UV irradiation emit in the 400Ƀ450 nm visible range (quantum yield 24%). The applicability of CNNPLys as novel fluorescent probes was demonstrated by a fluorescence quenching assay, in which gold nanoparticles (GNPs) were attached to Staphylococcal protein A and employed to quench the CNNPLys fluorescence by Forster resonant energy transfer (FRET). The quenching occurred upon formation of the specific binding between the GNP-linked protein A and CNNPLys-tagged immunoglobulins, while the inhibition of the binding resulted in the recovery of CNNPLys luminescence. The synthetic strategy, based on combining a pconjugated polymerq-forming unit (urea) and a co-precursor able to provide the desired functional group (lysine), allows designing innovative materials for the development of new generation fluorescence biosensors in which easily functionalized fluorophores are needed.

Keywords: g-C3N4, fluorescent probe, carbon nitride nanoparticles, quenching assay, fluorescent materials, Forster resonant energy transfer (FRET)

References(61)

1

Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T. A.; Bhand, S.; Hayat, A.; Marty, J. L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197.

2

Feng, X. L.; Liu, L. B.; Wang, S.; Zhu, D. B. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411-2419.

3

Liu, G. D.; Wang, J.; Kim, J.; Jan, M. R.; Collins, G. E. Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem. 2004, 76, 7126-7130.

4

Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701-6727.

5

Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11-18.

6

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743-4768.

7

Goftman, V. V.; Aubert, T.; Ginste, D. V.; Van Deun, R.; Beloglazova, N. V.; Hens, Z.; De Saeger, S.; Goryacheva, I. Y. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens. Bioelectron. 2016, 79, 476-481.

8

Speranskaya, E. S.; Beloglazova, N. V.; Lenain, P.; De Saeger, S.; Wang, Z. H.; Zhang, S. X.; Hens, Z.; Knopp, D.; Niessner, R.; Potapkin, D. V. et al. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosens. Bioelectron. 2014, 53, 225-231.

9

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. , Int. Ed. 2010, 49, 6726-6744.

10

Luo, P. G.; Sahu, S.; Yang, S. T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y. P. Carbon "quantum" dots for optical bioimaging. J. Mater. Chem. B 2013, 1, 2116-2127.

11

Wen, J.; Xu, Y. Q.; Li, H. J.; Lu, A. P.; Sun, S. G. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 2015, 51, 11346-11358.

12

Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

13

Esteves da Silva, J. C. G.; Gonçalves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327-1336.

14

Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 2012, 22, 21832-21837.

15

Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062-12068.

16

Chen, B. S.; Li, F. M.; Li, S. X.; Weng, W.; Guo, H. X.; Guo, T.; Zhang, X. Y.; Chen, Y. B.; Huang, T. T.; Hong, X. L. et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale 2013, 5, 1967-1971.

17

Zuo, J.; Jiang, T.; Zhao, X. J.; Xiong, X. H.; Xiao, S. J.; Zhu, Z. Q. Preparation and application of fluorescent carbon dots. J. Nanomater. 2015, 2015, 787862.

18

Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171-180.

19

Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489-5521.

20

Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: An emergent architecture for multimodal applications. J. Mater. Chem. B 2013, 1, 2375-2382.

21

Tabaraki, R.; Abdi, O.; Yousefipour, S. Green and selective fluorescent sensor for detection of Sn (Ⅳ) and Mo (Ⅵ) based on boron and nitrogen-co-doped carbon dots. J. Fluoresc. 2017, 27, 651-657.

22

Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W. P.; Shao, L. X. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(Ⅱ) detection and bioimaging. J. Mater. Chem. C 2015, 3, 73-78.

23

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.

24

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.

25

Wang, Q. B.; Wang, W.; Lei, J. P.; Xu, N.; Gao, F. L.; Ju, H. X. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182-12188.

26

Cao, X. T.; Ma, J.; Lin, Y. P.; Yao, B. X.; Li, F. M.; Weng, W.; Lin, X. C. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta Part A 2015, 151, 875-880.

27

Zhan, Y.; Liu, Z. M.; Liu, Q. Q.; Huang, D.; Wei, Y.; Hu, Y. C.; Lian, X. J.; Hu, C. F. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J. Chem. 2017, 41, 3930-3938.

28

Zhou, J.; Yang, Y.; Zhang, C. Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. 2013, 49, 8605-8607.

29

Guo, J. Q.; Lin, Y. P.; Huang, H.; Zhang, S. C.; Huang, T. T.; Weng, W. One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sens. Actuators B 2017, 244, 965-971.

30

Shen, L. M.; Zhang, L. P.; Chen, M. L.; Chen, X. W.; Wang, J. H. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 2013, 55, 343-349.

31

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.

32

Zhang, Y. J.; Mori, T.; Ye, J. H. Polymeric carbon nitrides: Semiconducting properties and emerging applications in photocatalysis and photoelectrochemical energy conversion. Sci. Adv. Mater. 2012, 4, 282-291.

33

Ren, X. L.; Meng, X. W.; Ren, J.; Tang, F. Q. Graphitic carbon nitride nanosheets with tunable optical properties and their superoxide dismutase mimetic ability. RSC Adv. 2016, 6, 92839-92844.

34

Capilli, G.; Costamagna, M.; Sordello, F.; Minero, C. Synthesis, characterization and photocatalytic performance of p-type carbon nitride. Appl. Catal. B: Environ. 2019, 242, 121-131.

35

Shiravand, G.; Badiei, A.; Ziarani, G. M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B 2017, 242, 244-252.

36

Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Sun, X. P. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012, 2, 411-413.

37

Wang, S.; Liu, R. Q.; Li, C. C. Highly selective and sensitive detection of Hg2+ based on Förster resonance energy transfer between CdSe quantum dots and g-C3N4 nanosheets. Nanoscale Res. Lett. 2018, 13, 235.

38

Han, J.; Zou, H. Y.; Gao, M. X.; Huang, C. Z. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 2016, 148, 279-284.

39

Wang, Y. P.; Wang, J. S.; Ma, P. P.; Yao, H. C.; Zhang, L.; Li, Z. J. Synthesis of fluorescent polymeric carbon nitride quantum dots in molten salts for security inks. New J. Chem. 2017, 41, 14918-14923.

40

Lazauskas, A.; Baltrusaitis, J.; Puodžiukynas, L.; Andrulevičius, M.; Bagdžiūnas, G.; Volyniuk, D.; Meškinis, Š.; Niaura, G.; Tamulevičius, T.; Jankauskaitė, V. Characterization of urea derived polymeric carbon nitride and resultant thermally vacuum deposited amorphous thin films: Structural, chemical and photophysical properties. Carbon 2016, 107, 415-425.

41

Zhuang, Q. F.; Sun, L. M.; Ni, Y. N. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 2017, 164, 458-462.

42

Bai, X. J.; Yan, S. C.; Wang, J. J.; Wang, L.; Jiang, W. J.; Wu, S. L.; Sun, C. P.; Zhu, Y. F. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. J. Mater. Chem. A 2014, 2, 17521-17529.

43

Hou, Y. X.; Lu, Q. J.; Deng, J. H.; Li, H. T.; Zhang, Y. Y. One-pot electro-chemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 2015, 866, 69-74.

44

Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 1948, 437, 55-75.

45

Minella, M.; Demontis, M.; Sarro, M.; Sordello, F.; Calza, P.; Minero, C. Photochemical stability and reactivity of graphene oxide. J. Mater. Sci. 2015, 50, 2399-2409.

46

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.

47

Anfossi, L.; Di Nardo, F.; Profiti, M.; Nogarol, C.; Cavalera, S.; Baggiani, C.; Giovannoli, C.; Spano, G.; Ferroglio, E.; Mignone, W. et al. A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis. Anal. Bioanal. Chem. 2018, 410, 4123-4134.

48

Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55-75.

49

Li, L. B.; Li, L.; Wang, C.; Liu, K. Y.; Zhu, R. H.; Qiang, H.; Lin, Y. Q. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim. Acta 2015, 182, 763-770.

50

Ghica, M. E.; Pauliukaite, R.; Fatibello-Filho, O.; Brett, C. M. A. Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sens. Actuators B 2009, 142, 308-315.

51

Hermanson, G. T. Bioconjugate Techniques, 3rd ed.; Elsevier: Amsterdam, 2013.

52

Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 1983.

53

Brouwer, A. M. Standards for photoluminescence quantum yield mea-surements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213-2228.

54

Jazayeri, M. H.; Amani, H.; Pourfatollah, A. A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sens. Res. 2016, 9, 17-22.

55

Dunn, J.; Wild, D. Calibration curve fitting. In The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques. Wild, D., Ed.; 4th ed. Elsevier: Amsterdam, 2013; pp 323-336.

DOI
56

Zhao, D. H.; Swager, T. M. Sensory responses in solution vs solid state: A fluorescence quenching study of poly(iptycenebutadiynylene)s. Macromolecules 2005, 38, 9377-9384.

57

De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat. Chem. 2009, 1, 461-465.

58

Vendrell, M.; Krishna, G. G.; Ghosh, K. K.; Zhai, D. T.; Lee, J. S.; Zhu, Q.; Yau, Y. H.; Shochat, S. G.; Kim, H.; Chung, J. et al. Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun. 2011, 47, 8424-8426.

59

Huang, A.; Li, W. W.; Shi, S.; Yao, T. M. Quantitative fluorescence quenching on antibody-conjugated graphene oxide as a platform for protein sensing. Sci. Rep. 2017, 7, 40772.

60

Zhang, P.; Zhuo, S. J.; Sun, L. L.; Zhang, P.; Zhu, C. Q. Determination of gamma-globulin at nanogram levels by its quenching effect on the fluorescence of a red emitting conjugated polymer. New J. Chem. 2015, 39, 4551-4555.

61

Okochi, M.; Sugita, T.; Tanaka, M.; Honda, H. A molecular peptide beacon for IgG detection. RSC Adv. 2015, 5, 91988-91992.

File
12274_2019_2449_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2018
Revised: 28 May 2019
Accepted: 30 May 2019
Published: 18 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The financial support from project Ricerca Locale-Torino University is gratefully acknowledged.

Return