Journal Home > Volume 12 , Issue 8

We reported the growth of horizontally aligned nitrogen-doped single-walled carbon nanotubes (SWNTs) on quartz substrates. The synthesized SWNTs were comprehensively characterized at the single nanotube level. Owing to the highly aligned nature of the nanotubes, we were able to investigate the diameter dependent doping mechanism through systematic resonant Raman spectroscopy studies. Other than the formerly found narrowing effect by N-doping, we proposed that the nanotube diameter affects the introduction of N atoms into the carbon lattice in an elaborate way. The obtained doping level increased along with the nanotube diameter but lost the increasing trend when the diameter became larger and experienced a slight decrease after reaching the local peak value. These insights about the heteroatom doping into the carbon nanotubes could benefit the development of the carbon nanotube based functional materials and extend their application in a broad range of areas.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays

Show Author's information Pan Li1Yiming Li1Xiao Zhang2Jun Chen1Yingwen Cheng3Yi Li1Yanwen Ma1( )Jie Liu2( )
Key Laboratory for Organic Electronics and Information Displays,Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road,Nanjing,210023,China;
Department of Chemistry,Duke University,Durham, North Carolina,27708,USA;
Department of Chemistry and Biochemistry,Northern Illinois University,DeKalb, Illinois,60115,USA;

Abstract

We reported the growth of horizontally aligned nitrogen-doped single-walled carbon nanotubes (SWNTs) on quartz substrates. The synthesized SWNTs were comprehensively characterized at the single nanotube level. Owing to the highly aligned nature of the nanotubes, we were able to investigate the diameter dependent doping mechanism through systematic resonant Raman spectroscopy studies. Other than the formerly found narrowing effect by N-doping, we proposed that the nanotube diameter affects the introduction of N atoms into the carbon lattice in an elaborate way. The obtained doping level increased along with the nanotube diameter but lost the increasing trend when the diameter became larger and experienced a slight decrease after reaching the local peak value. These insights about the heteroatom doping into the carbon nanotubes could benefit the development of the carbon nanotube based functional materials and extend their application in a broad range of areas.

Keywords: N-doping, Raman spectroscopy, chemical vapor deposition (CVD), single-walled carbon nanotube (SWNT) array, diameter dependent doping

References(34)

1

Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Springer: Berlin Heidelberg, 2008.

DOI
2

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. , Int. Ed. 2017, 56, 7764-7768.

3

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.

4

Liu, Y.; Shen, Y. T.; Sun, L. T.; Li, J. C.; Liu, C.; Ren, W. C.; Li, F.; Gao, L. B.; Chen, J.; Liu, F. C. et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016, 7, 10921.

5

Chen, T.; Cheng, B. R.; Zhu, G. Y.; Chen, R. P.; Hu, Y.; Ma, L. B.; Lv, H. L.; Wang, Y. R.; Liang, J.; Tie, Z. X. et al. Highly efficient retention of polysulfides in "sea urchin"-like carbon nanotube/nanopolyhedra supers-tructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 2017, 17, 437-444.

6

Blase, X.; Charlier, J. C.; De Vita, A.; Car, R.; Redlich, P.; Terrones, M.; Hsu, W. K.; Terrones, H.; Carroll, D. L.; Ajayan, P. M. Boron-mediated growth of long helicity-selected carbon nanotubes. Phys. Rev. Lett. 1999, 83, 5078-5081.

7

McGuire, K.; Gothard, N.; Gai, P. L.; Dresselhaus, M. S.; Sumanasekera, G.; Rao, A. M. Synthesis and Raman characterization of boron-doped single- walled carbon nanotubes. Carbon 2005, 43, 219-227.

8

Lin, H.; Arenal, R.; Enouz-Vedrenne, S.; Stephan, O.; Loiseau, A. Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique. J. Phys. Chem. C 2009, 113, 9509-9511.

9

Cruz-Silva, E.; Cullen, D. A.; Gu, L.; Romo-Herrera, J. M.; Muñoz- Sandoval, E.; López-Urías, F.; Sumpter, B. G.; Meunier, V.; Charlier, J. C.; Smith, D. J. et al. Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus−nitrogen doped multiwalled carbon nanotubes. ACS Nano 2008, 2, 441-448.

10

Ayala, P.; Arenal, R.; Rümmeli, M.; Rubio, A.; Pichler, T. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 2010, 48, 575-586.

11

Campos-Delgado, J.; Maciel, I. O.; Cullen, D. A.; Smith, D. J.; Jorio, A.; Pimenta, M. A.; Terrones, H.; Terrones, M. Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. ACS Nano 2010, 4, 1696-1702.

12

Glerup, M.; Steinmetz, J.; Samaille, D.; Stéphan, O.; Enouz, S.; Loiseau, A.; Roth, S.; Bernier, P. Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 2004, 387, 193-197.

13

He, M. S.; Zhou, S.; Zhang, J.; Liu, Z. F.; Robinson, C. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J. Phys. Chem. B 2005, 109, 9275-9279.

14

Liu, Y.; Jin, Z.; Wang, J. Y.; Cui, R. L.; Sun, H.; Peng, F.; Wei, L.; Wang, Z. X.; Liang, X. L.; Peng, L. M. et al. Nitrogen-doped single-walled carbon nanotubes grown on substrates: Evidence for framework doping and their enhanced properties. Adv. Funct. Mater. 2011, 21, 986-992.

15

Pint, C. L.; Sun, Z. Z.; Moghazy, S.; Xu, Y. Q.; Tour, J. M.; Hauge, R. H. Supergrowth of nitrogen-doped single-walled carbon nanotube arrays: Active species, dopant characterization, and doped/undoped heterojunctions. ACS Nano 2011, 5, 6925-6934.

16

Maciel, I. O.; Anderson, N.; Pimenta, M. A.; Hartschuh, A.; Qian, H. H.; Terrones, M.; Terrones, H.; Campos-Delgado, J.; Rao, A. M.; Novotny, L. et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 2008, 7, 878-883.

17

Elías, A. L.; Ayala, P.; Zamudio, A.; Grobosch, M.; Cruz-Silva, E.; Romo- Herrera, J. M.; Campos-Delgado, J.; Terrones, H.; Pichler, T.; Terrones, M. Spectroscopic characterization of N-doped single-walled carbon nanotube strands: An X-ray photoelectron spectroscopy and Raman study. J. Nanosci. Nanotechnol. 2010, 10, 3959-3964.

18

Maciel, I. O.; Pimenta, M. A.; Terrones, M.; Terrones, H.; Campos-Delgado, J.; Jorio, A. The two peaks G' band in carbon nanotubes. Phys. Status Solidi B 2008, 245, 2197-2200.

19

Maciel, I. O.; Campos-Delgado, J.; Cruz-Silva, E.; Pimenta, M. A.; Sumpter, B. G.; Meunier, V.; López-Urías, F.; Muñoz-Sandoval, E.; Terrones, H.; Terrones, M. et al. Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. Nano Lett. 2009, 9, 2267-2272.

20

Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428-5429.

21

Meshot, E. R.; Plata, D. L.; Tawfick, S.; Zhang, Y. Y.; Verploegen, E. A.; Hart, A. J. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 2009, 3, 2477-2486.

22

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362-1364.

23

Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288-4292.

24

Lu, C. G.; Liu, J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 2006, 110, 20254-20257.

25

Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J. Mater. Chem. 2011, 21, 11815-11821.

26

Sumpter, B. G.; Meunier, V.; Romo-Herrera, J. M.; Cruz-Silva, E.; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M. Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 2007, 1, 369-375.

27

Tian, G. L.; Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Self-organization of nitrogen-doped carbon nanotubes into double-helix structures. Carbon 2012, 50, 5323-5330.

28

Villalpando-Paez, F.; Zamudio, A.; Elias, A. L.; Son, H.; Barros, E. B.; Chou, S. G.; Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Kong, J. et al. Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 424, 345-352.

29

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

30

Terrones, M.; Filho, A. G. S.; Rao, A. M. Doped carbon nanotubes: Synthesis, characterization and applications. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin, Heidelberg, 2007; pp 531-566.

DOI
31

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1290.

32

Cançado, L. G.; Pimenta, M. A.; Saito, R.; Jorio, A.; Ladeira, L. O.; Grueneis, A.; Souza-Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 2002, 66, 035415.

33

Souza Filho, A. G.; Jorio, A.; Samsonidze, G. G.; Dresselhaus, G.; Pimenta, M. A.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B.B.; Saito, R. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Phys. Rev. B 2003, 67, 035427.

34

Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800-805.

File
12274_2019_2445_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2019
Revised: 15 May 2019
Accepted: 26 May 2019
Published: 15 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (Nos. 51802161, 51772157, and 61504062), Natural Science Foundation of Jiangsu Province (No. BK20160886), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX03001), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Synergistic Innovation Center for Organic Electronics and Information Displays, Jiangsu Province "Six Talent Peak" (No. 2014-XCL-014), Qing Lan Project of Jiangsu Province, Jiangsu Higher Education Institutions NSF (No. 17KJB430026), Scientific Research Foundation of NUPT (No. NY217012), Graduate Education Innovation Project in Jiangsu Province (No. CXZZ12_0461) and Keypoint Research and Invention Program of Jiangsu Province (No. BE2018010-3).

Return