Journal Home > Volume 12 , Issue 8

Aybrid tribo/piezoelectric nanogenerators (HTPENG) have been proven to be highly efficient and versatile as far as the collection and conversion of ambient energy are concerned, and the introduction of flexible and green materials is a key step for their potential applications. Here, we developed a HTPENG by using nitrocellulose nanofibril paper as the triboelectric layer and BaTiO3/MWCNT@bacterial cellulose paper as the piezoelectric layer. The output of the triboelelctric paper has considerable performance as fluorinated ethylene propylene, and the output of piezoelectric paper is more than ten times higher than the BTO/polydimethylsiloxane structure. The integrated outputs of the sandwich structured HTPENG are 18 V and 1.6 µA·cm-2, which are capable of lighting up three LED bulbs and charging a 1 µF capacitor to 2.5 V in 80 s. In addition, the voltage signal generated by the HTPENG in contact-separation mode can be used for dynamic pressure detection. The linear range of dynamic pressure is from 0.5 to 3 N·cm-2 with a high sensitivity of 8.276 V·cm2·N-1 and a detection limit of 0.2 N·cm-2. This work provides new insights into the design and application of cellulose-based hybrid nanogenerators with high flexibility and simple structure.


menu
Abstract
Full text
Outline
About this article

All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator

Show Author's information Ming Li1,2,§Yang Jie1,2,§Li-Hua Shao3,§Yilin Guo1,2Xia Cao1,2,4( )Ning Wang4( )Zhong Lin Wang1,2,5( )
Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST),Beijing,100083,China;
School of Nanoscience and Technology,University of Chinese Academy of Sciences,Beijing,100049,China;
Institute of Solid Mechanics,Beihang University,Beijing,100083,China;
Research Center for Bioengineering and Sensing Technology,Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, and Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing,Beijing,100083,China;
School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta, Georgia,30332,USA;

§ Ming Li, Yang Jie, and Li-Hua Shao contributed equally to this work.

Abstract

Aybrid tribo/piezoelectric nanogenerators (HTPENG) have been proven to be highly efficient and versatile as far as the collection and conversion of ambient energy are concerned, and the introduction of flexible and green materials is a key step for their potential applications. Here, we developed a HTPENG by using nitrocellulose nanofibril paper as the triboelectric layer and BaTiO3/MWCNT@bacterial cellulose paper as the piezoelectric layer. The output of the triboelelctric paper has considerable performance as fluorinated ethylene propylene, and the output of piezoelectric paper is more than ten times higher than the BTO/polydimethylsiloxane structure. The integrated outputs of the sandwich structured HTPENG are 18 V and 1.6 µA·cm-2, which are capable of lighting up three LED bulbs and charging a 1 µF capacitor to 2.5 V in 80 s. In addition, the voltage signal generated by the HTPENG in contact-separation mode can be used for dynamic pressure detection. The linear range of dynamic pressure is from 0.5 to 3 N·cm-2 with a high sensitivity of 8.276 V·cm2·N-1 and a detection limit of 0.2 N·cm-2. This work provides new insights into the design and application of cellulose-based hybrid nanogenerators with high flexibility and simple structure.

Keywords: energy harvesting, pressure sensor, cellulose, hybrid nanogenerator

References(31)

1

Liu, L.; Tang, W.; Deng, C. R.; Chen, B. D.; Han, K.; Zhong, W.; Wang, Z. L. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018, 11, 3972-3978.

2

Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508-4512.

3

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649-2657.

4

Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062-4073.

5

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.

6

Jenkins, K.; Kelly, S.; Nguyen, V.; Wu, Y.; Yang, R. S. Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy 2018, 51, 317-323.

7

Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184-17189.

8

Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722-730.

9

Soin, N.; Zhao, P. F.; Prashanthi, K.; Chen, J. K.; Ding, P.; Zhou, E. P.; Shah, T.; Ray, S. C.; Tsonos, C.; Thundat, T. et al. High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). Nano Energy 2016, 30, 470-480.

10

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282-2289.

11

Yuan, Z. Q.; Zhou, T.; Yin, Y. Y.; Cao, R.; Li, C. J.; Wang, Z. L. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano 2017, 11, 8364-8369.

12

Zhu, G.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151-3155.

13

Zhang, L. M.; Han, C. B.; Jiang, T.; Zhou, T.; Li, X. H.; Zhang, C.; Wang, Z. L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 2016, 22, 87-94.

14

Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076-19082.

15

Dhakar, L.; Tay, F. E. H.; Lee, C. Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J. Micromech. Microeng. 2014, 24, 104002.

16

Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168-1172.

17

Xu, X.; Potié, A.; Songmuang, R.; Lee, J. W.; Bercu, B.; Baron, T.; Salem, B.; Montès, L. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: Application to GaN nanowires. Nanotechnology 2011, 22, 105704.

18

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726-731.

19

Park, K. I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G. T.; Zhu, G.; Kim, J. E.; Kim, S. O.; Kim, D. K.; Wang, Z., L. et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 2012, 24, 2999-3004.

20

Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833-2838.

21

Tao, K.; Hu, W.; Xue, B.; Chovan, D.; Brown, N.; Shimon, L. J. W.; Maraba, O.; Cao, Y.; Tofail, S. A. M.; Thompson, D. et al. Bioinspired stable and photoluminescent assemblies for power generation. Adv. Mater. 2019, 31, 1807481.

22

Yuan, H.; Lei, T. M.; Qin, Y.; Yang, R. S. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 2019, 59, 84-90.

23

Yuan, H.; Lei, T. M.; Qin, Y.; He, J. H.; Yang, R. S. Design and application of piezoelectric biomaterials. J. Phys. D: Appl. Phys. 2019, 52, 194002.

24

Liu, S. L.; Tao, D. D.; Bai, H. Y.; Liu, X. Y. Cellulose-nanowhisker- templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J. Appl. Polym. Sci. 2012, 126, E282-E290.

25

Zeng, J.; Li, R.; Liu, S. L.; Zhang, L. N. Fiber-like TiO2 nanomaterials with different crystallinity phases fabricated via a green pathway. ACS Appl. Mater. Interfaces 2011, 3, 2074-2079.

26

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-3994.

27

Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661-666.

28

Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103-108.

29

Zhang, L. C.; Sun, X.; Hu, Z.; Yuan, C. C.; Chen, C. H. Rice paper as a separator membrane in lithium-ion batteries. J. Power Sources 2012, 204, 149-154.

30

Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27: 1700794.

31

Zhang, G. J.; Liao, Q. L.; Zhang, Z.; Liang, Q. J.; Zhao, Y. L.; Zheng, X.; Zhang, Y. Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 2016, 3, 1500257

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2019
Revised: 28 April 2019
Accepted: 20 May 2019
Published: 07 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We thank the financial support from the Beijing Municipal Science & Technology Commission, China (Nos. Z171100002017017 and Z181100008818081), the National Key R & D Project from Minister of Science and Technology, China (No. 2016YFA0202702), the National Natural Science Foundation of China (Nos. 51873020, 21575009, 51432005, and Y4YR011001), the "Thousands Talents" program for pioneer researcher and his innovation team, China, the National Postdoctoral Program for Innovative Talents (No. BX20180081), and China Postdoctoral Science Foundation (No. 2019M650604).

Return