Journal Home > Volume 12 , Issue 10

Ag-based nanoparticles (NPs) catalysts have recently attracted increasing attention in NaBH4-assisted nitrophenol reduction, especially in 4-nitrophenol (4-NP) reduction. Moreover, Ag-based NPs catalysts are considered to be very promising for practical applications because of their fascinating advantages, e.g., easy preparation, relatively low cost and less toxicity, high activity and good stability. Basically, the size and shape of Ag NPs are well known as the key factors for achieving highly efficient catalytic reduction of 4-NP. In this review, three highly efficient Ag-based NPs catalysts (supported Ag NPs, anisotropic Ag NPs and bimetallic Ag NPs) are highlighted for the 4-NP reduction, including the catalytic mechanism and reaction rate caused by their adjustments in size and shape. Although high catalytic activity has been demonstrated by several Ag-based NPs catalysts, further improvement in the catalytic performance is still desired. In terms of the most recent progress in Ag-based NPs catalysts for 4-NP reduction, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characterizations of these catalysts. Moreover, this review aims to correlate the catalytic performance of Ag-based NPs catalysts with their size and shape, guiding the development of novel cost-effective and high-performance catalysts.


menu
Abstract
Full text
Outline
About this article

Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction

Show Author's information Guangfu Liao1Yan Gong2Liu Zhong1Jiasheng Fang3Li Zhang4Zushun Xu5( )Haiyang Gao1( )Baizeng Fang6( )
School of Materials Science and Engineering,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Laboratory of High-Performance Polymer Composites, Sun Yat-sen University,Guangzhou,510275,China;
Department of Biomaterials,College of Materials, Xiamen University,Xiamen,361005,China;
School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan,52308,China;
Department of Chemistry,City University of Hong Kong,Hong Kong,999077,China;
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Material, Hubei University,Wuhan,430062,China;
Department of Chemical & Biological Engineering,University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3,Canada;

Abstract

Ag-based nanoparticles (NPs) catalysts have recently attracted increasing attention in NaBH4-assisted nitrophenol reduction, especially in 4-nitrophenol (4-NP) reduction. Moreover, Ag-based NPs catalysts are considered to be very promising for practical applications because of their fascinating advantages, e.g., easy preparation, relatively low cost and less toxicity, high activity and good stability. Basically, the size and shape of Ag NPs are well known as the key factors for achieving highly efficient catalytic reduction of 4-NP. In this review, three highly efficient Ag-based NPs catalysts (supported Ag NPs, anisotropic Ag NPs and bimetallic Ag NPs) are highlighted for the 4-NP reduction, including the catalytic mechanism and reaction rate caused by their adjustments in size and shape. Although high catalytic activity has been demonstrated by several Ag-based NPs catalysts, further improvement in the catalytic performance is still desired. In terms of the most recent progress in Ag-based NPs catalysts for 4-NP reduction, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characterizations of these catalysts. Moreover, this review aims to correlate the catalytic performance of Ag-based NPs catalysts with their size and shape, guiding the development of novel cost-effective and high-performance catalysts.

Keywords: Ag-based nanoparticles catalysts, catalytic reduction, 4-nitrophenol, catalytic activity, stability

References(282)

1

Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505-613.

2

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722-3811.

3

Gao, D. W.; Zhang, X.; Dai, X. P.; Qin, Y. C.; Duan, A. J.; Yu, Y. B.; Zhuo, H. Y.; Zhao, H. R.; Zhang, P. F.; Jiang, Y. et al. Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Res. 2016, 9, 3099-3115.

4

Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415-423.

5

Ai, Y. J.; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2017, 11, 287-299.

6

Liao, G. F.; Fang, J. S.; Li, Q.; Li, S. H.; Xu, Z. S.; Fang, B. Z. Ag-based nanocomposites: Synthesis and applications in catalysis. Nanoscale 2019, 11, 7062-7096.

7

Cheng, T. Y.; Zhang, D. C.; Li, H. X.; Liu, G. H. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem. 2014, 16, 3401-3427.

8

Saran, S.; Manjari, G.; Devipriya, S. P. Synergistic eminently active catalytic and recyclable Ag, Cu and Ag-Cu alloy nanoparticles supported on TiO2 for sustainable and cleaner environmental applications: A phytogenic mediated synthesis. J. Clean. Prod. 2018, 177, 134-143.

9

Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268-15274.

10

Aswathy Aromal, S.; Philip, D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A 2012, 97, 1-5.

11

Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d'Alessandro, N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 2012, 14, 1073-1078.

12

Mourdikoudis, S.; Altantzis, T.; Liz-Marzan, L. M.; Bals, S.; Pastoriza-Santos, I.; Pérez-Juste, J. Hydrophilic Pt nanoflowers: Synthesis, crystallographic analysis and catalytic performance. CrystEngComm 2016, 18, 3422-3427.

13

Kästner, C.; Thünemann, A. F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383-7391.

14

Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordin. Chem. Rev. 2015, 287, 114-136.

15

Cheng, Y. J.; Luo, G. F.; Zhu, J. Y.; Xu, X. D.; Zeng, X.; Cheng, D. B.; Li, Y. M.; Wu, Y.; Zhang, X. Z.; Zhuo, R. X. et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 9078-9087.

16

Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999-1006.

17

Liao, G. F.; Zhao, W. Z.; Li, Q.; Pang, Q. H.; Xu, Z. S. Novel poly(acrylic acid)-modified tourmaline/silver composites for adsorption removal of Cu(Ⅱ) ions and catalytic reduction of methylene blue in water. Chem. Lett. 2017, 46, 1631-1634.

18

Mudassir, M. A.; Hussain, S. Z.; Rehman, A.; Zaheer, W.; Asma, S. T.; Jilani, A.; Aslam, M.; Zhang, H. F.; Ansari, T. M.; Hussain, I. Development of silver-nanoparticle-decorated emulsion-templated hierarchically porous poly(1-vinylimidazole) beads for water treatment. ACS Appl. Mater. Interfaces 2017, 9, 24190-24197.

19

Wu, Z. L.; Liu, Q. G.; Yang, X. F.; Ye, X.; Duan, H. M.; Zhang, J.; Zhao, B.; Huang, Y. Q. Knitting aryl network polymers-incorporated Ag nanoparticles: A mild and efficient catalyst for the fixation of CO2 as carboxylic acid. ACS Sustainable Chem. Eng. 2017, 5, 9634-9639.

20

Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. , Int. Ed. 2014, 53, 1756-1789.

21

Mathew, A.; Pradeep, T. Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Char. 2014, 31, 1017-1053.

22

Dang-Bao, T.; Pla, D.; Favier, I.; Gómez, M. Bimetallic nanoparticles in alternative solvents for catalytic purposes. Catalysts 2017, 7, 207.

23

Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 2001, 17, 1800-1802.

24

Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A 2002, 196, 247-257.

25

Fang, G. C.; Bi, X. H. Silver-catalysed reactions of alkynes: Recent advances. Chem. Soc. Rev. 2015, 44, 8124-8173.

26

Martin, D. J.; Liu, G. G.; Moniz, S. J. A.; Bi, Y. P.; Beale, A. M.; Ye, J. H.; Tang, J. W. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808-7828.

27

Li, G. P.; Wang, Y. X.; Mao, L. Q. Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Adv. 2014, 4, 53649-53661.

28

Wen, C.; Yin, A. Y.; Dai, W. L. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Appl. Catal. B Environ. 2014, 160-161, 730-741.

29

Zheng, Q. Z.; Jiao, N. Ag-catalyzed C-H/C-C bond functionalization. Chem. Soc. Rev. 2016, 45, 4590-4627.

30

Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 2014, 118, 18618-18625.

31

Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577-5587.

32

Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catal. 2011, 1, 908-916.

33

Xu, W. L.; Kong, J. S.; Yeh, Y. T.; Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992-996.

34

Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.

35

Zhang, L.; Liu, Z.; Liu, L. Y.; Ju, X. J.; Wang, W.; Xie, R.; Chu, L. Y. Novel smart microreactors equipped with responsive catalytic nanoparticles on microchannels. ACS Appl. Mater. Interfaces 2017, 9, 33137-33148.

36

Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229-12234.

37

Choi, H.; Lee, J. P.; Ko, S. J.; Jung, J. W.; Park, H.; Yoo, S.; Park, O.; Jeong, J. R.; Park, S.; Kim, J. Y. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett. 2013, 13, 2204-2208.

38

Murugan, E.; Rangasamy, R. Synthesis, characterization, and heterogeneous catalysis of polymer-supported poly(propyleneimine) dendrimer stabilized gold nanoparticle catalyst. J. Polym. Sci. A Polym. Chem. 2010, 48, 2525-2532.

39

Li, Y. X.; Wu, Y.; Gao, Y.; Sha, S. S.; Hao, J. F.; Cao, G. Q.; Yang, C. A facile method to fabricate polystyrene/silver composite particles and their catalytic properties. RSC Adv. 2013, 3, 26361-26366.

40

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.

41

Deng, Z. W.; Zhu, H. B.; Peng, B.; Chen, H.; Sun, Y. F.; Gang, X. D.; Jin, P. J.; Wang, J. L. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 2012, 4, 5625-5632.

42

Cong, Y.; Xia, T.; Zou, M.; Li, Z. N.; Peng, B.; Guo, D. Z.; Deng, Z. W. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2014, 2, 3450-3461.

43

Liao, G. F.; Li, Q.; Zhao, W. Z.; Pang, Q. H.; Gao, H. Y.; Xu, Z. S. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A Gen. 2018, 549, 102-111.

44

Liao, G. F.; Chen, J.; Zeng, W. G.; Yu, C. H.; Yi, C. F.; Xu, Z. S. Facile preparation of uniform nanocomposite spheres with loading silver nano-particles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol. J. Phys. Chem. C 2016, 120, 25935-25944.

45

Peng, F.; Wang, Q.; Shi, R. J.; Wang, Z. Y.; You, X.; Liu, Y. H.; Wang, F. H.; Gao, J.; Mao, C. Fabrication of sesame sticks-like silver nanoparticles/polystyrene hybridnanotubes and their catalytic effects. Sci. Rep. 2016, 6, 39502.

46

Xu, P. P.; Liao, G. F. A novel fluorescent biosensor for adenosine triphosphate detection based on a metal-organic framework coating polydopamine Layer. Materials 2018, 11, 1616.

47

Zou, Y. B.; Jin, H. L.; Sun, F.; Dai, X. M.; Xu, Z. S.; Yang, S. L.; Liao, G. F. Design and synthesis of a lead sulfide based nanotheranostic agent for computer tomography/magnetic resonance dual-mode-bioimaging-guided photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2294-2305.

48

Zhang, H.; Zhao, T. Y.; Newland, B.; Liu, W. G.; Wang, W.; Wang, W. X. Catechol functionalized hyperbranched polymers as biomedical materials. Prog. Polym. Sci. 2018, 78, 47-55.

49

Li, Q.; Liao, G. F.; Tian, J.; Xu, Z. S. Preparation of novel fluorinated copolyimide/amine-functionalized Sepia eumelanin nanocomposites with enhanced mechanical, thermal, and UV-shielding properties. Macromol. Mater. Eng. 2018, 303, 1700407.

50

Zou, Y. B.; Sun, F.; Liu, C. M.; Yu, C. H.; Zhang, M. J.; He, Q. Y.; Xiong, Y. X.; Xu, Z. S.; Yang, S. L.; Liao, G. F. A novel nanotheranostic agent for dual-mode imaging-guided cancer therapy based on europium complexes-grafted-oxidative dopamine. Chem. Eng. J. 2019, 357, 237-247.

51

Zhang, M. J.; Zou, Y. B.; Zhong, Y. P.; Liao, G. F.; Yu, C. H.; Xu, Z. S. Polydopamine-based tumor-targeted multifunctional reagents for computer tomography/fluorescence dual-mode bioimaging-guided photothermal therapy. ACS Appl. Bio Mater. 2019, 2, 630-637.

52

Liao, G. F.; Li, Q.; Xu, Z. S. The chemical modification of polyaniline with enhanced properties: A review. Prog. Org. Coat. 2019, 126, 35-43.

53

Wang, B. W.; Zhang, J. J.; Xia, Z. G.; Fan, M. Q.; Lv, C. J.; Tian, G. L.; Li, X. N. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries. Nano Res. 2018, 11, 2460-2469.

54

Liao, G. F.; Gong, Y.; Yi, C. F.; Xu, Z. S. Soluble, antibaterial, and anticorrosion studies of sulfonated polystyrene/polyaniline/silver nanocomposites prepared with the sulfonated polystyrene template. Chin. J. Chem. 2017, 35, 1157-1164.

55

Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012-1021.

56

Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: The "holy grail" for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, DOI: 10.1039/c9ee00717b.

57

Tian, G. Y.; Wang, W. B.; Mu, B.; Kang, Y. R.; Wang, A. Q. Ag(Ⅰ)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption. J. Colloid Interface Sci. 2016, 473, 84-92.

58

Bogdanović, U.; Pašti, I.; Ćirić-Marjanović, G.; Mitrić, M.; Ahrenkiel, S. P.; Vodnik, V. Interfacial synthesis of gold-polyaniline nanocomposite and its electrocatalytic application. ACS Appl. Mater. Interfaces 2015, 7, 28393-28403.

59

Hien, H. T.; Giang, H. T.; van Hieu, N.; Trung, T.; van Tuan, C. Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors. Sens. Actuat. B Chem. 2017, 249, 348-356.

60

Guo, S. J.; Dong, S. J.; Wang, E. K. Polyaniline/Pt hybrid nanofibers: High-efficiency nanoelectrocatalysts for electrochemical devices. Small 2009, 5, 1869-1876.

61

Han, J.; Liu, Y.; Guo, R. Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water. Adv. Funct. Mater. 2009, 19, 1112-1117.

62

Wang, H. Y.; Jiang, X. X.; Lee, S. T.; He, Y. Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 2014, 10, 4455-4468.

63

Stejskal, J. Conducting polymer-silver composites. Chem. Papers 2013, 67, 814-848.

64

Han, J.; Wang, M. G.; Hu, Y. M.; Zhou, C. Q.; Guo, R. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application. Prog. Polym. Sci. 2017, 70, 52-91.

65

Yuan, C. H.; Xu, Y. T.; Zhong, L. N.; Zhang, L.; Yang, C. J.; Jiang, B. J.; Deng, Y. M.; Zeng, B. R.; He, N.; Luo, W. A. et al. Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 2013, 24, 185602.

66

Mondal, S.; Rana, U.; Malik, S. Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate. ACS Appl. Mater. Interfaces 2015, 7, 10457-10465.

67

Zhang, L.; Liu, X. C.; Wang, Y. H.; Xing, S. X. Controllable silver embedding into polypyrrole. J. Alloys Compd. 2017, 709, 431-437.

68

Balamurugan, A.; Ho, K. C.; Chen, S. M. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth. Met. 2009, 159, 2544-2549.

69

Xia, Y. Y.; Xu, L. Fabrication and catalytic property of an Ag@poly(3, 4-ethylenedioxythiophene) yolk/shell structure. Synth. Met. 2010, 160, 545-548.

70

Seo, E.; Kim, J.; Hong, Y.; Kim, Y. S.; Lee, D.; Kim, B. S. Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction. J. Phys. Chem. C 2013, 117, 11686-11693.

71

Huang, X. J.; Xiao, Y.; Zhang, W.; Lang, M. D. In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl. Surf. Sci. 2012, 258, 2655-2660.

72

Zhang, Z. T.; Zhao, B.; Hu, L. M. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121, 105-110.

73

Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883-17905.

74

Cloud, J. E.; Taylor, L. W.; Yang, Y. A. A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals. RSC Adv. 2014, 4, 24551-24559.

75

Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695-699.

76

Song, J. L.; Birbach, N. L.; Hinestroza, J. P. Deposition of silver nano-particles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 2012, 19, 411-424.

77

Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 2011, 163, 23-38.

78

Wu, J. J.; Zhao, N.; Zhang, X. L.; Xu, J. Cellulose/silver nanoparticles composite microspheres: Eco-friendly synthesis and catalytic application. Cellulose 2012, 19, 1239-1249.

79

Kaushik, M.; Moores, A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622-637.

80

Wu, X. Y.; Shi, Z. Q.; Fu, S. D.; Chen, J. L.; Berry, R. M.; Tam, K. C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustainable Chem. Eng. 2016, 4, 5929-5935.

81

Jiang, F.; Hsieh, Y. L. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering. Biomacromolecules 2014, 15, 3608-3616.

82

Wei, H. R.; Rodriguez, K.; Renneckar, S.; Vikesland, P. J. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci. : Nano 2014, 1, 302-316.

83

Tang, J. T.; Shi, Z. Q.; Berry, R. M.; Tam, K. C. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind. Eng. Chem. Res. 2015, 54, 3299-3308.

84

Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nano-structures in liquid phase. Chem. Rev. 2014, 114, 6462-6555.

85

Yalçın, G.; Elmas, B.; Tuncel, M.; Tuncel, A. A low, particle-sized, nonporous support for enzyme immobilization: Uniform poly(glycidyl methacrylate) latex particles. J. Appl. Polym. Sci. 2006, 101, 818-824.

86

Deng, Y. M.; Li, J. F.; Pu, Y. T.; Chen, Y. M.; Zhao, J. L.; Tang, J. N. Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. React. Funct. Polym. 2016, 103, 92-98.

87

Macková, H.; Oukacine, F.; Plichta, Z.; Hrubý, M.; Kučka, J.; Taverna, M.; Horák, D. Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: Electrophoretic characterisation of carboxyl- and amine-modified particles. J. Colloid Interface Sci. 2014, 421, 146-153.

88

Zhang, W. C.; Sun, Y.; Zhang, L. In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol. Ind. Eng. Chem. Res. 2015, 54, 6480-6488.

89

Zhang, W. C.; Sun, Y.; Zhang, L. Fabrication of high efficient silver nanoparticle catalyst supported on poly(glycidyl methacrylate)-polyacrylamide. Ind. Eng. Chem. Res. 2016, 55, 12398-12406.

90

Panigrahi, R.; Srivastava, S. K. Ultrasound assisted synthesis of a polyaniline hollow microsphere/Ag core/shell structure for sensing and catalytic applications. RSC Adv. 2013, 3, 7808-7815.

91

Dang, G. F.; Shi, Y.; Fu, Z. F.; Yang, W. T. Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis. Particuology 2013, 11, 346-352.

92

Rajesh, R.; Venkatesan, R. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J. Mol. Catal. A Chem 2012, 359, 88-96.

93

Murugadoss, A.; Chattopadhyay, A. A 'green' chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 2008, 19, 015603.

94

Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 2013, 29, 4225-4234.

95

Nemanashi, M.; Meijboom, R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J. Colloid Interface Sci. 2013, 389, 260-267.

96

Crooks, R. M.; Zhao, M. Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv. Mater. 1999, 11, 217-220.

DOI
97

Chechik, V.; Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J. Am. Chem. Soc. 2000, 122, 1243-1244.

98

Chechik, V.; Zhao, M. Q.; Crooks, R. M. Self-assembled inverted micelles prepared from a dendrimer template: Phase transfer of encapsulated guests. J. Am. Chem. Soc. 1999, 121, 4910-4911.

99

Balogh, L.; Swanson, D. R.; Tomalia, D. A.; Hagnauer, G. L.; McManus, A. T. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 2001, 1, 18-21.

100

Rodríguez-reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159-175.

101

Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244-7253.

102

Cao, Y. L.; Mao, S. J.; Li, M. M.; Chen, Y. Q.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090-8112.

103

Jiang, C. L.; Nie, J.; Ma, G. P. A polymer/metal core-shell nanofiber membrane by electrospinning with an electric field, and its application for catalyst support. RSC Adv. 2016, 6, 22996-23007.

104

Cao, C.; Wei, L. L.; Su, M.; Wang, G.; Shen, J. Q. Template-free and one-pot synthesis of N-doped hollow carbon tube @ hierarchically porous carbon supporting homogeneous AgNPs for robust oxygen reduction catalyst. Carbon 2017, 112, 27-36.

105

Ma, S. C.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 2016, 4, 8573-8578.

106

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132-145.

107

Wei, Y.; Zuo, X.; Li, X. Q.; Song, S. S.; Chen, L. W.; Shen, J.; Meng, Y. D.; Zhao, Y.; Fang, S. D. Dry plasma synthesis of graphene oxide-Ag nanocomposites: A simple and green approach. Mater. Res. Bull. 2014, 53, 145-150.

108

Mao, A. Q.; Zhang, D. H.; Jin, X.; Gu, X. L.; Wei, X. Q.; Yang, G. J.; Liu, X. H. Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity. J. Phys. Chem. Solids 2012, 73, 982-986.

109

Li, Y. Z.; Cao, Y. L.; Xie, J.; Jia, D. Z.; Qin, H. Y.; Liang, Z. T. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 2015, 58, 21-25.

110

Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520-527.

111

Bai, W. S.; Nie, F.; Zheng, J. B.; Sheng, Q. L. Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing. ACS Appl. Mater. Interfaces 2014, 6, 5439-5449.

112

Wang, Z. M.; Xu, C. L.; Li, X.; Liu, Z. H. In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Colloids Surf. A 2015, 485, 102-110.

113

Jeon, E. K.; Seo, E.; Lee, E.; Lee, W.; Um, M. K.; Kim, B. S. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392-3394.

114

Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726-4730.

115

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207-5234.

116

Zhang, L. S.; Liang, X. Q.; Song, W. G.; Wu, Z. Y. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys. Chem. Chem. Phys. 2010, 12, 12055-12059.

117

Cheng, C.; Li, S.; Thomas, A.; Kotov, N. A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev. 2017, 117, 1826-1914.

118

Nair, A. K.; Elizabeth, I.; Gopukumar, S.; Thomas, S.; Kala, M. S.; Kalarikkal, N. Nitrogen doped graphene-silver nanowire hybrids: An excellent anode material for lithium ion batteries. Appl. Surf. Sci. 2018, 428, 1119-1129.

119

Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092-3108.

120

Tian, Y.; Cao, Y. Y.; Pang, F.; Chen, G. -Q.; Zhang, X. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv. 2014, 4, 43204-43211.

121

John, J.; Gravel, E.; Namboothiri, I. N. N.; Doris, E. Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnol. Rev. 2012, 1, 515-539.

122

Pérez-Mayoral, E.; Calvino-Casilda, V.; Soriano, E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products. Catal. Sci. Technol. 2016, 6, 1265-1291.

123

Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105-1136.

124

Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096-1104.

125

Li, H. Q.; Jo, J. K.; Zhang, L. D.; Ha, C. S.; Suh, H.; Kim, I. A general and efficient route to fabricate carbon nanotube-metal nanoparticles and carbon nanotube-inorganic oxides hybrids. Adv. Funct. Mater. 2010, 20, 3864-3873.

126

Li, H. Q.; Jo, J. K.; Zhang, L. D.; Ha, C. S.; Suh, H.; Kim, I. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 2010, 26, 18442-18453.

127

Li, H. Q.; Cooper-White, J. J. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids. Nanoscale 2013, 5, 2915-2920.

128

Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837-867.

129

Alshehri, S. M.; Almuqati, T.; Almuqati, N.; Al-Farraj, E.; Alhokbany, N.; Ahamad, T. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohyd. Polym. 2016, 151, 135-143.

130

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. , Int. Ed. 2010, 49, 6726-6744.

131

Zheng, H. Z.; Wang, Q. L.; Long, Y. J.; Zhang, H. J.; Huang, X. X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 2011, 47, 10650-10652.

132

Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Doblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401.

133

Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Tracking the source of carbon dot photoluminescence: Aromatic domains versus molecular fluorophores. Nano Lett. 2017, 17, 7710-7716.

134

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.

135

Essner, J. B.; Laber, C. H.; Baker, G. A. Carbon dot reduced bimetallic nanoparticles: Size and surface plasmon resonance tunability for enhanced catalytic applications. J. Mater. Chem. A 2015, 3, 16354-16360.

136

Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Rouzaud, J. N.; Martínez-Alonso, A.; Tascón, J. M. D. Discovery of effective solvents for platelet-type graphite nanofibers. Carbon 2013, 53, 222-230.

137

Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Adv. 2013, 3, 18323-18331.

138

Tang, S.; Vongehr, S.; Meng, X. K. Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C 2009, 114, 977-982.

139

Kao, L. H.; Chang, Y. C.; Hung, P. W.; Lee, H. T.; Chi, P. H. Coupled synthesis and encapsulation in one-pot method for fabricating size-tunable hollow carbon spheres containing encapsulated Ag microparticles. Colloids Surf. A 2012, 410, 170-177.

140

Ji, T.; Chen, L.; Schmitz, M.; Bao, F. S.; Zhu, J. H. Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nano-particles as a highly active catalyst. Green Chem. 2015, 17, 2515-2523.

141

Ji, T.; Chen, L.; Mu, L. W.; Yuan, R. X.; Knoblauch, M.; Bao, F. S.; Zhu, J. H. In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. Appl. Catal. B Environ. 2016, 182, 306-315.

142

Bulushev, D. A.; Zacharska, M.; Lisitsyn, A. S.; Podyacheva, O. Y.; Hage, F. S.; Ramasse, Q. M.; Bangert, U.; Bulusheva, L. G. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 2016, 6, 3442-3451.

143

Cui, X. L.; Li, H.; Yuan, M.; Yang, J.; Xu, D.; Li, Z. Y.; Yu, G. Q.; Hou, Y. M.; Dong, Z. P. Facile preparation of fluffy N-doped carbon modified with Ag nanoparticles as a highly active and reusable catalyst for catalytic reduction of nitroarenes. J. Colloid Interface Sci. 2017, 506, 524-531.

144

Tzounis, L.; Contreras-Caceres, R.; Schellkopf, L.; Jehnichen, D.; Fischer, D.; Cai, C. Z.; Uhlmann, P.; Stamm, M. Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: A nanohybrid system with combined SERS and catalytic properties. RSC Adv. 2014, 4, 17846-17855.

145

Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem. —Eur. J. 2013, 19, 12196-12211.

146

Jiang, S. D.; Song, L.; Zeng, W. R.; Huang, Z. Q.; Zhan, J.; Stec, A. A.; Hull, T. R.; Hu, Y.; Hu, W. Z. Self-assembly fabrication of hollow mesoporous silica@Co-Al layered double hydroxide@graphene and application in toxic effluents elimination. ACS Appl. Mater. Interfaces 2015, 7, 8506-8514.

147

Li, W. Q.; Wang, G. Z.; Li, G. H.; Zhang, Y. X. "Ship-in-a-bottle" approach to synthesize Ag@hm-SiO2 yolk/shell nanospheres. Chin. J. Chem. Phys. 2015, 28, 611-616.

148

Li, W. Q.; Ge, X.; Zhang, H.; Ding, Q. Q.; Ding, H. L.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Hollow mesoporous SiO2 sphere nanoarchitectures with encapsulated silver nanoparticles for catalytic reduction of 4-nitrophenol. Inorg. Chem. Front. 2016, 3, 663-670.

149

Sun, Z. B.; Cui, G. J.; Li, H. Z.; Tian, Y. X.; Yan, S. Q. Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst. Colloids Surf. A 2016, 489, 142-153.

150

Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B Environ. 2014, 158-159, 129-135.

151

Xing, Z.; Tay, S. W.; Ng, Y. H.; Hong, L. Porous SiO2 hollow spheres as a solar reflective pigment for coatings. ACS Appl. Mater. Interfaces 2017, 9, 15103-15113.

152

Rodrigues, T. S.; da Silva, A. G. M.; Gonçalves, M. C.; Fajardo, H. V.; Balzer, R.; Probst, L. F. D.; Camargo, P. H. C. AgPt hollow nanodendrites: Synthesis and uniform dispersion over SiO2 support for catalytic applications. ChemNanoMat 2015, 1, 46-51.

153

Shajkumar, A.; Nandan, B.; Sanwaria, S.; Albrecht, V.; Libera, M.; Lee, M. H.; Auffermann, G.; Stamm, M.; Horechyy, A. Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach. J. Colloid Interface Sci. 2017, 491, 246-254.

154

Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42-43.

155

Wu, L.; Wang, Z. Y.; Zong, S. F.; Huang, Z.; Zhang, P. Y.; Cui, Y. P. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosensor. Bioelectron. 2012, 38, 94-99.

156

Xiao, Z. Y.; Huang, S. X.; Zhai, S. R.; Zhai, B.; Zhang, F.; An, Q. D. PMHS-reduced fabrication of hollow Ag-SiO2 composite spheres with developed porosity. J. Sol-Gel Sci. Technol. 2015, 75, 82-89.

157

Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896-8943.

158

Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 2009, 21, 1684-1689.

159

Song, Y. Y.; Jiang, H. J.; Wang, B. B.; Kong, Y.; Chen, J. Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent. ACS Appl. Mater. Interfaces 2018, 10, 1792-1801.

160

Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H. B.; Bouhrara, M.; Basset, J. M. Magnetically recoverable nanocatalysts. Chem. Rev. 2011, 111, 3036-3075.

161

Zeng, H.; Sun, S. H. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18, 391-400.

162

Shen, M.; Chen, S. Q.; Jia, W. P.; Fan, G. D.; Jin, Y. X.; Liang, H. D. Facile synthesis of Ag@Fe3O4@C-Au core-shell microspheres for surface-enhanced Raman scattering. Gold Bull. 2016, 49, 103-109.

163

Lin, T. R.; Wang, J.; Guo, L. Q.; Fu, F. F. Fe3O4@MoS2 core-shell composites: Preparation, characterization, and catalytic application. J. Phys. Chem. C 2015, 119, 13658-13664.

164

Sharma, G.; Jeevanandam, P. A facile synthesis of multifunctional iron oxide@Ag core-shell nanoparticles and their catalytic applications. Eur. J. Inorg. Chem. 2013, 2013, 6126-6136.

165

Zhu, M. Y.; Wang, C. J.; Meng, D. H.; Diao, G. W. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 2013, 1, 2118-2125.

166

Karki, H. P.; Ojha, D. P.; Joshi, M. K.; Kim, H. J. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite. Appl. Surf. Sci. 2018, 435, 599-608.

167

Kaloti, M.; Kumar, A.; Navani, N. K. Synthesis of glucose-mediated Ag-γ-Fe2O3 multifunctional nanocomposites in aqueous medium-a kinetic analysis of their catalytic activity for 4-nitrophenol reduction. Green Chem. 2015, 17, 4786-4799.

168

Yamazaki, K.; Kayama, T.; Dong, F.; Shinjoh, H. A mechanistic study on soot oxidation over CeO2-Ag catalyst with "rice-ball" morphology. J. Catal. 2011, 282, 289-298.

169

Mitsudome, T.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Core-shell AgNP@CeO2 nanocomposite catalyst for highly chemoselective reductions of unsaturated aldehydes. Chem. —Eur. J. 2013, 19, 5255-5258.

170

Evangelista, V.; Acosta, B.; Miridonov, S.; Smolentseva, E.; Fuentes, S.; Simakov, A. Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. B Environ. 2015, 166-167, 518-528.

171

Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012, 22, 10480-10487.

172

Wang, Y. Y.; Shu, Y.; Xu, J.; Pang, H. Facile one-step synthesis of Ag@CeO2 core-shell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. CrystEngComm 2017, 19, 684-689.

173

Shi, Y.; Zhang, X. L.; Zhu, Y. M.; Tan, H. L.; Chen, X. S.; Lu, Z. H. Core-shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2-nitroaniline. RSC Adv. 2016, 6, 47966-47973.

174

Ji, Z. Y.; Shen, X. P.; Yang, J. L.; Zhu, G. X.; Chen, K. M. A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: Green synthesis and catalytic properties. Appl. Catal. B Environ. 2014, 144, 454-461.

175

Liu, Q.; Wang, A. Q.; Wang, X. H.; Gao, P.; Wang, X. D.; Zhang, T. Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Micropor. Mesopor. Mater. 2008, 111, 323-333.

176

Lesaint, C.; Kleppa, G.; Arla, D.; Glomm, W. R.; Øye, G. Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route. Micropor. Mesopor. Mater. 2009, 119, 245-251.

177

Naik, B.; Prasad, V. S.; Ghosh, N. N. Preparation of Ag nanoparticle loaded mesoporous γ-alumina catalyst and its catalytic activity for reduction of 4-nitrophenol. Powder Technol. 2012, 232, 1-6.

178

Solanki, J. N.; Murthy, Z. V. P. Reduction of nitro aromatic compounds over Ag/Al2O3 nanocatalyst prepared in water-in-oil microemulsion: Effects of water-to-surfactant mole ratio and type of reducing agent. Ind. Eng. Chem. Res. 2011, 50, 7338-7344.

179

Mori, K.; Kumami, A.; Tomonari, M.; Yamashita, H. A pH-induced size controlled deposition of colloidal Ag nanoparticles on alumina support for catalytic application. J. Phys. Chem. C 2009, 113, 16850-16854.

180

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830-15833.

181

Hu, M.; Zhang, Z. W.; Luo, C. K.; Qiao, X. Q. One-pot green synthesis of Ag-decorated SnO2 microsphere: An efficient and reusable catalyst for reduction of 4-nitrophenol. Nanoscale Res. Lett. 2017, 12, 435.

182

Lei, M.; Wu, W.; Yang, S. L.; Zhang, X. G.; Xing, Z.; Ren, F.; Xiao, X. H.; Jiang, C. Z. Design of enhanced catalysts by coupling of noble metals (Au, Ag) with semiconductor SnO2 for catalytic reduction of 4-nitrophenol. Part. Part. Syst. Char. 2016, 33, 212-220.

183

Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Eng. J. 2014, 258, 247-253.

184

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763-1774.

185

Bao, Z. H.; Yuan, Y.; Leng, C. B.; Li, L.; Zhao, K.; Sun, Z. H. One-pot synthesis of noble metal/zinc oxide composites with controllable morphology and high catalytic performance. ACS Appl. Mater. Interfaces 2017, 9, 16417-16425.

186

Zhang, Y. Y.; Guo, S. B.; Ma, J. Q.; Ge, H. G. Preparation, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres. J. Sol-Gel Sci. Technol. 2014, 72, 171-178.

187

Xu, Y.; Yan, X. F.; Fang, W. Z.; Daniele, S.; Zhang, J. L.; Wang, L. Z. SERS self-monitoring of Ag-catalyzed reaction by magnetically separable mesoporous Fe3O4@Ag@mSiO2. Micropor. Mesopor. Mater. 2018, 263, 113-119.

188

Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Li, C. Z. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 2013, 29, 690-695.

189

Shin, K. S.; Cho, Y. K.; Choi, J. Y.; Kim, K. Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols. Appl. Catal. A Gen. 2012, 413-414, 170-175.

190

Abbas, M.; Torati, S. R.; Kim, C. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline. Nanoscale 2015, 7, 12192-12204.

191

Chi, Y.; Yuan, Q.; Li, Y. J.; Tu, J. C.; Zhao, L.; Li, N.; Li, X. T. Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2012, 383, 96-102.

192

Du, X. Y.; He, J.; Zhu, J.; Sun, L. J.; An, S. S. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 2012, 258, 2717-2723.

193

Kokate, M.; Garadkar, K.; Gole, A. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance. J. Colloid Interface Sci. 2016, 483, 249-260.

194

Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807-1824.

195

Rösler, C.; Fischer, R. A. Metal-organic frameworks as hosts for nanoparticles. CrystEngComm 2015, 17, 199-217.

196

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.

197

Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822-11825.

198

Islam, D. A.; Chakraborty, A.; Acharya, H. Fluorescent silver nanoclusters (Ag NCs) in the metal-organic framework MIL-101(Fe) for the catalytic hydrogenation of 4-nitroaniline. New J. Chem. 2016, 40, 6745-6751.

199

Janiak, C.; Vieth, J. K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366-2388.

200

Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388-17391.

201

Jiang, Z. F.; Jiang, D. L.; Showkot Hossain, A. M.; Qian, K.; Xie, J. M. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal-organic frameworks and their catalytic application in p-nitrophenol reduction. Phys. Chem. Chem. Phys. 2015, 17, 2550-2559.

202

Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134-3184.

203

Wu, D. C.; Xu, F.; Sun, B.; Fu, R. W.; He, H. K.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112, 3959-4015.

204

Li, Q.; Liao, G. F.; Zhang, S. L.; Pang, L.; Tong, H.; Zhao, W. Z.; Xu, Z. S. Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites. Appl. Surf. Sci. 2018, 427, 437-450.

205

Zeng, W. G.; Chen, J.; Yang, H.; Deng, L. D.; Liao, G. F.; Xu, Z. S. Robust coating with superhydrophobic and self-cleaning properties in either air or oil based on natural zeolite. Surf. Coat. Technol. 2017, 309, 1045-1051.

206

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.

207

Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515-1563.

208

Wang, R.; Gu, L. N.; Zhou, J. J.; Liu, X. L.; Teng, F.; Li, C. H.; Shen, Y. H.; Yuan, Y. P. Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 2015, 2, 1500037.

209

Hasell, T.; Wood, C. D.; Clowes, R.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem. Mater. 2010, 22, 557-564.

210

Cao, H. L.; Huang, H. B.; Chen, Z.; Karadeniz, B.; Lü, J.; Cao, R. Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl. Mater. Interfaces 2017, 9, 5231-5236.

211

Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053-3063.

212

Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces 2017, 9, 7481-7488.

213

da Silva, A. G. M.; Rodrigues, T. S.; Wang, J. L.; Yamada, L. K.; Alves, T. V.; Ornellas, F. R.; Ando, R. A.; Camargo, P. H. C. The fault in their shapes: Investigating the surface-plasmon-resonance-mediated catalytic activities of silver quasi-spheres, cubes, triangular prisms, and wires. Langmuir 2015, 31, 10272-10278.

214

Sadeghi, B.; Sadjadi, M. A. S.; Vahdati, R. A. R. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals. Superlattices Microstruct. 2009, 46, 858-863.

215

Maiyalagan, T. Synthesis, characterization and electrocatalytic activity of silver nanorods towards the reduction of benzyl chloride. Appl. Catal. A Gen. 2008, 340, 191-195.

216

Kim, B. H.; Lee, J. S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 2015, 149-150, 678-685.

217

Miao, Y. E.; Lee, H. K.; Chew, W. S.; Phang, I. Y.; Liu, T. X.; Ling, X. Y. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem. Commun. 2014, 50, 5923-5926.

218

Zhang, W.; Tan, F. T.; Wang, W.; Qiu, X. L.; Qiao, X. L.; Chen, J. G. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater. 2012, 217-218, 36-42.

219

Wei, G. D.; Nan, C. W.; Deng, Y.; Lin, Y. H. Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater. 2003, 15, 4436-4441.

220

Wen, X. G.; Xie, Y. T.; Mak, M. W.; Cheung, K. Y.; Li, X. Y.; Renneberg, R.; Yang, S. H. Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir 2006, 22, 4836-4842.

221

Rashid, M. H.; Mandal, T. K. Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 2007, 111, 16750-16760.

222

Takahashi, M.; Mohan, P.; Nakade, A.; Higashimine, K.; Mott, D.; Hamada, T.; Matsumura, K.; Taguchi, T.; Maenosono, S. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 2015, 31, 2228-2236.

223

Mahmoud, M. A.; El-Sayed, M. A. Metallic double shell hollow nanocages: The challenges of their synthetic techniques. Langmuir 2012, 28, 4051-4059.

224

Weng, G. J.; Mahmoud, M. A.; El-Sayed, M. A. Nanocatalysts can change the number of electrons involved in oxidation-reduction reaction with the nanocages being the most efficient. J. Phys. Chem. C 2012, 116, 24171-24176.

225

Mahmoud, M. A.; El-Sayed, M. A. Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett. 2011, 11, 946-953.

226

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

227

Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795-1805.

228

Min, J. Z.; Wang, F.; Cai, Y. L.; Liang, S.; Zhang, Z. W.; Jiang, X. M. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol. Chem. Commun. 2015, 51, 761-764.

229

Vadakkekara, R.; Chakraborty, M.; Parikh, P. A. Reduction of aromatic nitro compounds on colloidal hollow silver nanospheres. Colloids Surf. A 2012, 399, 11-17.

230

Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.

231

Liao, F. L.; Lo, T. W. B.; Tsang, S. C. E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem 2015, 7, 1998-2014.

232

Kaiser, J.; Leppert, L.; Welz, H.; Polzer, F.; Wunder, S.; Wanderka, N.; Albrecht, M.; Lunkenbein, T.; Breu, J.; Kümmel, S. et al. Catalytic activity of nanoalloys from gold and palladium. Phys. Chem. Chem. Phys. 2012, 14, 6487-6495.

233

Jang, H. J.; Min, D. H. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy. ACS Nano 2015, 9, 2696-2703.

234

Zhang, J. W.; Winget, S. A.; Wu, Y. R.; Su, D.; Sun, X. J.; Xie, Z. X.; Qin, D. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy. ACS Nano 2016, 10, 2607-2616.

235

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.

236

Sun, Y. G.; Xia, Y. N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892-3901.

237

Papagiannouli, I.; Aloukos, P.; Rioux, D.; Meunier, M.; Couris, S. Effect of the composition on the nonlinear optical response of AuxAg1-x nano-alloys. J. Phys. Chem. C 2015, 119, 6861-6872.

238

Mallin, M. P.; Murphy, C. J. Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett. 2002, 2, 1235-1237.

239

Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713-3735.

240

Rajendra, R.; Bhatia, P.; Justin, A.; Sharma, S.; Ballav, N. Homogeneously-alloyed gold-silver nanoparticles as per feeding moles. J. Phys. Chem. C 2015, 119, 5604-5613.

241

Choi, Y.; Hong, S.; Liu, L. C.; Kim, S. K.; Park, S. Galvanically replaced hollow Au-Ag nanospheres: Study of their surface plasmon resonance. Langmuir 2012, 28, 6670-6676.

242

Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.

243

Liu, R. X.; Guo, J. H.; Ma, G.; Jiang, P.; Zhang, D. H.; Li, D. X.; Chen, L.; Guo, Y. T.; Ge, G. L. Alloyed crystalline Au-Ag hollow nanostructures with high chemical stability and catalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 16833-16844.

244

Roh, J.; Back, S. H.; Ahn, D. J. Shape-persistent replica synthesis of gold/silver bimetallic nanoplates using tailored silica cages. Small 2016, 12, 1322-1327.

245

Xia, B. H.; He, F.; Li, L. D. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 2013, 29, 4901-4907.

246

Lee, J.; Han, K.; Jang, D. J. Silica-coated silver/gold composite nanoboxes having enhanced catalytic performances and reusability. Appl. Catal. A Gen. 2014, 469, 380-386.

247

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. , Int. Ed. 2012, 51, 68-89.

248

Niknafs, Y.; Amirjani, A.; Marashi, P.; Fatmehsari, D. H. Synthesis of Ag-Cu and Ag-Cu2O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects. Mater. Chem. Phys. 2017, 189, 44-49.

249

Wu, W.; Lei, M.; Yang, S. L.; Zhou, L.; Liu, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 3450-3455.

250

Jin, M. S.; Zhang, H.; Wang, J. G.; Zhong, X. L.; Lu, N.; Li, Z. Y.; Xie, Z. X.; Kim, M. J.; Xia, Y. N. Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch. ACS Nano 2012, 6, 2566-2573.

251

Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. , Int. Ed. 2011, 50, 10560-10564.

252

Sevonkaev, I. V.; Herein, D.; Jeske, G.; Goia, D. V. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors. Nanoscale 2014, 6, 9614-9617.

253

Verma, A. D.; Pal, S.; Verma, P.; Srivastava, V.; Mandal, R. K.; Sinha, I. Ag-Cu bimetallic nanocatalysts for p-nitrophenol reduction using a green hydrogen source. J. Environ. Chem. Eng. 2017, 5, 6148-6155.

254

Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.

255

Chuntonov, L.; Bar-Sadan, M.; Houben, L.; Haran, G. Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles. Nano Lett. 2012, 12, 145-150.

256

Liu, Y. T.; Zhou, J.; Wang, B. B.; Jiang, T.; Ho, H. P.; Petti, L.; Mormile, P. Au@Ag core-shell nanocubes: Epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys. Chem. Chem. Phys. 2015, 17, 6819-6826.

257

Wang, R. J.; Yao, Y. F.; Shen, M.; Wang, X. S. Green synthesis of Au@Ag nanostructures through a seed-mediated method and their application in SERS. Colloids Surf. A 2016, 492, 263-272.

258

Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21, 2519-2525.

259

Xue, C.; Millstone, J. E.; Li, S. Y.; Mirkin, C. A. Plasmon-driven synthesis of triangular core-shell nanoprisms from gold seeds. Angew. Chem. , Int. Ed. 2007, 46, 8436-8439.

260

Yoo, H.; Millstone, J. E.; Li, S. Z.; Jang, J. W.; Wei, W.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Core-shell triangular bifrustums. Nano Lett. 2009, 9, 3038-3041.

261

Wilson, O. M.; Scott, R. W.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015-1024.

262

Tsao, Y. C.; Rej, S.; Chiu, C. Y.; Huang, M. H. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties. J. Am. Chem. Soc. 2014, 136, 396-404.

263

Haldar, K. K.; Kundu, S.; Patra, A. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21946-21953.

264

Li, T.; Chattopadhyay, S.; Shibata, T.; Cook, R. E.; Miller, J. T.; Suthiwangcharoen, N.; Lee, S.; Winans, R. E.; Lee, B. Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. J. Mater. Chem. 2012, 22, 14458-14464.

265

Monga, A.; Pal, B. Improved catalytic activity and surface electro-kinetics of bimetallic Au-Ag core-shell nanocomposites. New J. Chem. 2015, 39, 304-313.

266

Zhang, X.; Su, Z. H. Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Adv. Mater. 2012, 24, 4574-4577.

267

Zhou, J. J.; Duan, B.; Fang, Z.; Song, J. B.; Wang, C. X.; Messersmith, P. B.; Duan, H. W. Interfacial assembly of mussel-inspired Au@Ag@ polydopamine core-shell nanoparticles for recyclable nanocatalysts. Adv. Mater. 2014, 26, 701-705.

268

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414-10472.

269

Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Shen, J. C.; Meng, X. K. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 2009, 25, 11890-11896.

270

Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Meng, X. K. Highly catalytic Pd-Ag bimetallic dendrites. J. Phys. Chem. C 2010, 114, 15005-15010.

271

Kim, M.; Lee, K. Y.; Jeong, G. H.; Jang, J.; Han, S. W. Fabrication of Au-Ag alloy nanoprisms with enhanced catalytic activity. Chem. Lett. 2007, 36, 1350-1351.

272

Jing, H.; Wang, H. Structural evolution of Ag-Pd bimetallic nanoparticles through controlled galvanic replacement: Effects of mild reducing agents. Chem. Mater. 2015, 27, 2172-2180.

273

Zheng, T. T.; Zhang, Q. F.; Feng, S.; Zhu, J. J.; Wang, Q.; Wang, H. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J. Am. Chem. Soc. 2014, 136, 2288-2291.

274

Zhang, W. Q.; Yang, J. Z.; Lu, X. M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397-7405.

275

Popa, A.; Samia, A. C. S. Effect of metal precursor on the growth and electrochemical sensing properties of Pt-Ag nanoboxes. Chem. Commun. 2014, 50, 7295-7298.

276

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

277

Mahmoud, M. A.; Garlyyev, B.; El-Sayed, M. A. Controlling the catalytic efficiency on the surface of hollow gold nanoparticles by introducing an inner thin layer of platinum or palladium. J. Phys. Chem. Lett. 2014, 5, 4088-4094.

278

Fang, Z. C.; Wang, Y. C.; Liu, C. X.; Chen, S.; Sang, W.; Wang, C.; Zeng, J. Rational design of metal nanoframes for catalysis and plasmonics. Small 2015, 11, 2593-2605.

279

Snyder, J.; Livi, K.; Erlebacher, J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 2013, 23, 5494-5501.

280

Xia, Y. N.; Yang, X. Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc. Chem. Res. 2017, 50, 450-454.

281

Li, J. M.; Liu, J. Y.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039-7042.

282

Li, J. M.; Sun, X. J.; Qin, D. Ag-enriched Ag-Pd bimetallic nanoframes and their catalytic properties. ChemNanoMat 2016, 2, 494-499.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 March 2019
Revised: 28 April 2019
Accepted: 17 May 2019
Published: 06 June 2019
Issue date: October 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 21674130, 51873234 and 51573039), the Natural Science Foundation of Guangdong Province (Nos. 2017A030313254 and 2017A030310349), the Fundamental Research Funds for the Central Universities (No. 17lgjc02), PetroChina Innovation Foundation (No. 2017D-5007-0505), and Research Start-up Funds of DGUT (No. GC300501-116). Key Laboratory Opening Fund of PCFM is also gratefully acknowledged.

Return