AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid

Kevin E. Fritz1Yichen Yan1Jin Suntivich1,2( )
Department of Materials Science and EngineeringCornell UniversityIthacaNew York14850USA
Kavli Institute at Cornell for Nanoscale ScienceIthacaNew York14850USA
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

The development of non-precious, acid-stable, oxygen reduction reaction (ORR) electrocatalysts can significantly aid the commercialization of proton exchange membrane fuel cells (PEMFCs). We report a survey of the ORR electrocatalysis on 3d metal substituted (M = Mn, Fe, Co) molybdenum and tungsten nitrides in acidic environments. We find that molybdate catalysts are more active than tungstates, with the specific activity depending on the chemistry of the substituted 3d metal. In both families, more electronegative 3d metals led to higher ORR activity (i.e., Co > Fe > Mn). We attribute this result to the ability of the more electronegative 3d metal to withdraw electrons from the Mo- or W-based active sites, effectively oxidizing the metal centers of the catalysts. Based on our observation, future nitride ORR electrocatalysts can be further optimized by oxidizing the Mo sites further by, for example, adding even more electronegative dopant metals or incorporating anion vacancies.

Electronic Supplementary Material

Download File(s)
12274_2019_2440_MOESM1_ESM.pdf (3.7 MB)

References

1

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9-35.

2

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.

3

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744-6762.

4

Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666-673.

5

Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.

6

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.

7

Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.

8

Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143-14149.

9

Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J. P.; Strasser, P. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 2015, 6, 8618.

10

An, L.; Huang, W.; Zhang, N.; Chen, X.; Xia, D. A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 62-65.

11

Abroshan, H.; Bothra, P.; Back, S.; Kulkarni, A.; Nørskov, J. K.; Siahrostami, S. Ultrathin cobalt oxide overlayer promotes catalytic activity of cobalt nitride for the oxygen reduction reaction. J. Phys. Chem. C 2018, 122, 4783-4791.

12

Miura, A.; Rosero-Navarro, C.; Masubuchi, Y.; Higuchi, M.; Kikkawa, S.; Tadanaga, K. Nitrogen-rich manganese oxynitrides with enhanced catalytic activity in the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 7963-7967.

13

Wang, L.; Yin, J.; Zhao, L.; Tian, C.; Yu, P.; Wang, J.; Fu, H. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022-3024.

14

Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 2015, 5, 1857-1862.

15

Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167-3192.

16

Cao, B.; Veith, G. M.; Diaz, R. E.; Liu, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 10753-10757.

17

Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg. Chem. 2015, 54, 2128-2136.

18

Miura, A.; Wen, X.; Abe, H.; Yau, G.; DiSalvo, F. J. Non-stoichiometric FexWN2: Leaching of Fe from layer-structured FeWN2. J. Solid State Chem. 2010, 183, 327-331.

19

Luo, J.; Tian, X.; Zeng, J.; Li, Y.; Song, H.; Liao, S. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165-6174.

20

Grins, J.; Käll, P. O.; Svensson, G. Synthesis and structural characterisation of MnWN2 prepared by ammonolysis of MnWO4. J. Mater. Chem. 1995, 5, 571-575.

21

DiSalvo, F. J.; Clarke, S. J. Ternary nitrides: A rapidly growing class of new materials. Curr. Opin. Solid State Mater. Sci. 1996, 1, 241-249.

22

Bern, D. S.; Olsen, H. P.; zur Loye, H. C. Synthesis, electronic and magnetic characterization of the ternary nitride (Fe0.8Mo0.2)MoN2. Chem. Mater. 1995, 7, 1824-1828.

23

Bem, D. S.; Lampe-Önnerud, C. M.; Olsen, H. P.; zur Loye, H. C. Synthesis and structure of two new ternary nitrides: FeWN2 and MnMoN2. Inorg. Chem. 1996, 35, 581-585.

24

Panda, R. N.; Gajbhiye, N. S. Chemical synthesis and magnetic properties of nanocrystalline FeMoN2. J. Cryst. Growth 1998, 191, 92-96.

25

Jackson, S. K.; Layland, R. C.; zur Loye, H. C. The simultaneous powder X-ray and neutron diffraction refinement of two η-carbide type nitrides, Fe3Mo3N and Co3Mo3N, prepared by ammonolysis and by plasma nitridation of oxide precursors. J. Alloys Compd. 1999, 291, 94-101.

26

Cao, B.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186-19192.

27

Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068-3076.

28
Cao, B. Investigations of non-noble metal based oxynitrides and nitrides as electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction. Ph. D. Dissertation, Stony Brook University, New York, 2014.
29

Zhong, H.; Zhang, H.; Liang, Y.; Zhang, J.; Wang, M.; Wang, X. A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells. J. Power Sources 2007, 164, 572-577.

30

Tian, X.; Luo, J.; Nan, H.; Fu, Z.; Zeng, J.; Liao, S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 16801-16809.

31

Hada, K.; Nagai, M.; Omi, S. Characterization and HDS activity of cobalt molybdenum nitrides. J. Phys. Chem. B 2001, 105, 4084-4093.

Nano Research
Pages 2307-2312
Cite this article:
Fritz KE, Yan Y, Suntivich J. Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid. Nano Research, 2019, 12(9): 2307-2312. https://doi.org/10.1007/s12274-019-2440-6
Topics:
Part of a topical collection:

912

Views

29

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 19 February 2019
Revised: 07 May 2019
Accepted: 16 May 2019
Published: 07 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return