Journal Home > Volume 12 , Issue 8

The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extensive density functional theory (DFT) calculations, herein we predict that single Pt atom decorated g-C3N4 (Pt@g-C3N4) exhibits excellent catalytic activity and selectivity for the conversion of nitrobenzene into aniline under visible light. The overall activation energy barrier for the hydrogenation of nitrobenzene on single atom Pt@g-C3N4 catalyst is even lower than that of the bare Pt(111) surface. The dissociation of N-O bonds on single Pt atom is triggered by single hydrogen atom rather than double hydrogen atoms on the Pt(111) surface. Moreover, the Pt@g-C3N4 catalyst exhibits outstanding chemoselectivity towards the common reducible substituents, such as phenyl, -C=C, -C≡C and -CHO groups during the hydrogenation. In addition, the doped single Pt atom can significantly enhance the photoconversion efficiency by broadening the light absorption of the pristine g-C3N4 to visible light region. Our results highlight an interesting and experimentally synthesized single-atom photocatalyst (Pt@g-C3N4) for efficient hydrogenation of nitrobenzene to aniline under a sustainable and green approach.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline

Show Author's information Tianwei HeChunmei ZhangLei ZhangAijun Du( )
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty,Queensland University of Technology, Gardens Point Campus,Brisbane, QLD,4001,Australia;

Abstract

The hydrogenation of nitrobenzene into aniline is one of industrially important reactions, but still remains great challenge due to the lack of highly active, chemo-selective and eco-friendly catalyst. By using extensive density functional theory (DFT) calculations, herein we predict that single Pt atom decorated g-C3N4 (Pt@g-C3N4) exhibits excellent catalytic activity and selectivity for the conversion of nitrobenzene into aniline under visible light. The overall activation energy barrier for the hydrogenation of nitrobenzene on single atom Pt@g-C3N4 catalyst is even lower than that of the bare Pt(111) surface. The dissociation of N-O bonds on single Pt atom is triggered by single hydrogen atom rather than double hydrogen atoms on the Pt(111) surface. Moreover, the Pt@g-C3N4 catalyst exhibits outstanding chemoselectivity towards the common reducible substituents, such as phenyl, -C=C, -C≡C and -CHO groups during the hydrogenation. In addition, the doped single Pt atom can significantly enhance the photoconversion efficiency by broadening the light absorption of the pristine g-C3N4 to visible light region. Our results highlight an interesting and experimentally synthesized single-atom photocatalyst (Pt@g-C3N4) for efficient hydrogenation of nitrobenzene to aniline under a sustainable and green approach.

Keywords: photocatalyst, single-atom catalyst, chemoselective hydrogenation, nitrobenzene

References(77)

1

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76-80.

2

Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629-2637.

3

Beier, M. J.; Andanson, J. M.; Baiker, A. Tuning the chemoselective hydrogenation of nitrostyrenes catalyzed by ionic liquid-supported platinum nanoparticles. ACS Catal. 2012, 2, 2587-2595.

4

Marquez, J.; Pletcher, D. A study of the electrochemical reduction of nitrobenzene to p-aminophenol. J. Appl. Electrochem. 1980, 10, 567-573.

5

Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266-7269.

6

Joshi, R.; Chudasama, U. Hydrogenation and oxidation reactions involving ruthenium supported catalysts. Ind. Eng. Chem. Res. 2010, 49, 2543-2547.

7

Deshmukh, A. A.; Prashar, A. K.; Kinage, A. K.; Kumar, R.; Meijboom, R. Ru(Ⅱ) phenanthroline complex as catalyst for chemoselective hydrogenation of nitro-aryls in a green process. Ind. Eng. Chem. Res. 2010, 49, 12180-12184.

8

Noyori, R. Synthesizing our future. Nat. Chem. 2009, 1, 5-6.

9

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.

10

Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875-12879.

11

He, D. P.; Shi, H.; Wu, Y.; Xu, B. Q. Synthesis of chloroanilines: Selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green Chem. 2007, 9, 849-851.

12

He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient and selective room‐temperature gold‐catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem., Int. Ed. 2009, 48, 9538-9541.

13

Serna, P.; Concepción, P.; Corma, A. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 2009, 265, 19-25.

14

Shen, K.; Chen, L.; Long, J. L; Zhong, W.; Li, Y. W. MOFs-templated Co@Pd core-shell nps embedded in N-doped carbon matrix with superior hydrogenation activities. ACS Catal. 2015, 5, 5264-5271.

15

Ren, Y. J.; Wei, H. S.; Yin, G. Z.; Zhang, L. L.; Wang, A. Q.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969-1972.

16

Liu, L. C.; Gao, F.; Concepción, P.; Corma, A. A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J. Catal. 2017, 350, 218-225.

17

Zhang, J. W.; Lu, G. P.; Cai, C. Chemoselective transfer hydrogenation of nitroarenes by highly dispersed Ni-Co BMNPs. Catal. Commun. 2016, 84, 25-29.

18

Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B: Environ. 2018, 226, 509-522.

19

Sheng, X.; Wouters, B.; Breugelmans, T.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Appl. Catal. B: Environ. 2014, 147, 330-339.

20

Nguyen, T. B.; Huang, C. P.; Doong, R. A. Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B: Environ. 2019, 240, 337-347.

21

Raja, R.; Golovko, V. B.; Thomas, J. M.; Berenguer-Murcia, A.; Zhou, W. Z.; Xie, S. H.; Johnson, B. F. G. Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics. Chem. Commun. 2005, 2026-2028.

22

Blaser, H. U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 2009, 1, 210-221.

23

Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Appl. Catal. A: Gen. 2009, 356, 99-102.

24

Corma, A.; Serna, P.; Concepción, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748-8753.

25

Siegrist, U.; Baumeister, P.; Blaser, H. U.; Studer, M. The selective hydrogenation of functionalized nitroarenes: New catalytic systems. Chem. Ind. 1998, 75, 207-220.

26

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537-543.

27

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-1076.

28

Zhu, H. Y.; Ke, X. B.; Yang, X. Z.; Sarina, S.; Liu, H. W. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem., Int. Ed. 2010, 49, 9657-9661.

29

Naya, S. I.; Inoue, A.; Tada, H. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J. Am. Chem. Soc. 2010, 132, 6292-6293.

30

Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on biocl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513-3521.

31

Xiao, Q.; Liu, Z.; Wang, F.; Sarina, S.; Zhu, H. Y. Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support. Appl. Catal. B: Environ. 2017, 209, 69-79.

32

Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Cui, Y. H.; Wu, W. H.; Yang, Y. X.; Zhang, Z.; Lei, Z. Q. Construction of heterostructured MIL-125/ Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl. Catal. B: Environ. 2017, 205, 42-54.

33

Dai, X.; Xie, M. L.; Meng, S. G.; Fu, X. L.; Chen, S. F. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B: Environ. 2014, 158-159, 382-390.

34

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

35

Tew, M. W.; Janousch, M.; Huthwelker, T.; Van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45-54.

36

García-Mota, M.; Bridier, B.; Pérez-Ramírez, J.; López, N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J. Catal. 2010, 273, 92-102.

37

Zhao, F. Y.; Ikushima, Y.; Arai, M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: Effects of pressure, solvent, and metal particle size. J. Catal. 2004, 224, 479-483.

38

Mondal, B.; Mukherjee, P. S. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds. J. Am. Chem. Soc. 2018, 140, 12592-12601.

39

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

40

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

41

Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

42

Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133-5139.

43

He, T. W.; Zhang, C. M.; Du, A. J. Single-atom supported on graphene grain boundary as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Eng. Sci. 2019, 194, 58-63.

44

He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition‐metal single atoms anchored on graphdiyne as high‐efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, in press, https://doi.org/10.1002/smtd.201800419.

45

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63-72.

46

He, T. W.; Zhang, C. M.; Will, G.; Du, A. J. Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catal. Today 2018, in press, https://doi.org/10.1016/j.cattod.2018.10.056.

47

Lin, Z. Z. Graphdiyne-supported single-atom Sc and Ti catalysts for high- efficient CO oxidation. Carbon 2016, 108, 343-350.

48

Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090-1096.

49

Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76-78.

50

He, T. W.; Matta, S. K.; Du, A. J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 2019, 21, 1546-1551.

51

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

52

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142-13146.

53

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.

54

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

55

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292-6297.

56

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.

57

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564.

58

Gong, L.; Mu, Y.; Janik, M. J. Mechanistic roles of catalyst surface coating in nitrobenzene selective reduction: A first-principles study. Appl. Catal. B: Environ. 2018, 236, 509-517.

59

Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W. F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337-344.

60

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

61

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

62

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

63

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.

64

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-9985.

65

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez‐Ramírez, J. A stable single‐site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.

66

Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230-16237.

67

Saeys, M.; Reyniers, M. F.; Marin, G. B.; Neurock, M. Density functional study of benzene adsorption on Pt (111). J. Phys. Chem. B 2002, 106, 7489-7498.

68

Saeys, M.; Reyniers, M. F.; Neurock, M.; Marin, G.; Marin G. B. Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt (111). J. Phys. Chem. B 2005, 109, 2064-2073.

69

He, T. W.; Gao, G. P.; Kou, L. Z.; Will, G.; Du, A. J. Endohedral metallofullerenes (M@C60) as efficient catalysts for highly active hydrogen evolution reaction. J. Catal. 2017, 354, 231-235.

70

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031-1036.

71

Mahata, A.; Rai, R. K.; Choudhuri, I.; Singh, S. K.; Pathak, B. Direct vs. Indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 26365-26374.

72

Millán, R.; Liu, L. C.; Boronat, M.; Corma, A. A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. J. Catal. 2018, 364, 19-30.

73

Xia, L. X.; Li, D.; Long, J.; Huang, F.; Yang, L. N.; Guo, Y. S.; Jia, Z. M.; Xiao, J. P.; Liu, H. Y. N-doped graphene confined Pt nanoparticles for efficient semi-hydrogenation of phenylacetylene. Carbon 2019, 145, 47-52.

74

Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996, 96, 2035-2052.

75

Liao, G. Z.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721-2726.

76

Liu, S. Z.; Ke, J.; Sun, H. Q.; Liu, J.; Tade, M. O.; Wang, S. B. Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. Appl. Catal. B: Environ. 2017, 204, 358-364.

77

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2012, 135, 18-21.

File
12274_2019_2439_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2019
Revised: 14 May 2019
Accepted: 17 May 2019
Published: 11 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We acknowledge generous grants of high-performance computing resources provided by NCI National Facility and The Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by the Australian Government and the Government of Western Australia. A. D. also greatly appreciates the financial support of the Australian Research Council under Discovery Project (No. DP170103598).

Return