Journal Home > Volume 12 , Issue 9

Soft materials such as block copolymers, liquid crystals and colloidal assemblies are excellent candidates for use in optical applications due to their ability to spontaneously self-assemble into ordered structures on optically-relevant length scales. Some of these applications rely on optical properties that are intrinsic to the structure and chemical composition of the soft material itself, while others are reliant on the presence of inorganic nanomaterials within the soft material to produce the properties of interest. However, soft materials can be used to generate optical phenomena that originate not just from the intrinsic properties of the nanomaterials, but from their spatial organization as well. In the latter case, exotic optical phenomena such as light focusing beyond the diffraction limit, negative index of refraction and nonlinear photonics appear. These properties originate from the collective response of multiple nanostructures organized to produce an ordered metamaterial. Soft materials, being an excellent medium to convey order on the nanoscale, can be utilized in next generation optical applications to create this kind of organization. Here, we survey how soft matter can be leveraged in optical applications by exploiting self-assembly and directed self-assembly as methods to produce ordered structures with desirable properties. We highlight applications where the soft material is the optically active component, and others where it's used in tandem with nanomaterials. Specifically, we focus on how soft materials can be used to spatially organize inorganic nanomaterials for use in optical applications where the controlled assembly of such nanomaterials is crucial.


menu
Abstract
Full text
Outline
About this article

Optical materials and metamaterials from nanostructured soft matter

Show Author's information Uri R. GabinetChinedum O. Osuji( )
Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA

Abstract

Soft materials such as block copolymers, liquid crystals and colloidal assemblies are excellent candidates for use in optical applications due to their ability to spontaneously self-assemble into ordered structures on optically-relevant length scales. Some of these applications rely on optical properties that are intrinsic to the structure and chemical composition of the soft material itself, while others are reliant on the presence of inorganic nanomaterials within the soft material to produce the properties of interest. However, soft materials can be used to generate optical phenomena that originate not just from the intrinsic properties of the nanomaterials, but from their spatial organization as well. In the latter case, exotic optical phenomena such as light focusing beyond the diffraction limit, negative index of refraction and nonlinear photonics appear. These properties originate from the collective response of multiple nanostructures organized to produce an ordered metamaterial. Soft materials, being an excellent medium to convey order on the nanoscale, can be utilized in next generation optical applications to create this kind of organization. Here, we survey how soft matter can be leveraged in optical applications by exploiting self-assembly and directed self-assembly as methods to produce ordered structures with desirable properties. We highlight applications where the soft material is the optically active component, and others where it's used in tandem with nanomaterials. Specifically, we focus on how soft materials can be used to spatially organize inorganic nanomaterials for use in optical applications where the controlled assembly of such nanomaterials is crucial.

Keywords: optical properties, soft matter, metamaterials, block copolymers, photonic band gaps

References(124)

1

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

2

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28–32.

3

Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.

4

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

5

Meinzer, N.; Barnes, W. L.; Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898.

6

Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 2004, 305, 788–792.

7

Li, G. X.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010.

8

Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

9

Willets, K. A.; van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

10

Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.

11

Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

12

Huang, L. L.; Chen, X. Z.; Mühlenbernd, H.; Li, G. X.; Bai, B. F.; Tan, Q. F.; Jin, G. F.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012, 12, 5750–5755.

13

Ni, H. B.; Wang, M.; Shen, T. Y.; Zhou, J. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 2015, 9, 1913–1925.

14

Lyvers, D. P.; Moon, J. M.; Kildishev, A. V.; Shalaev, V. M.; Wei, A. Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2008, 2, 2569–2576.

15

Zhang, S. J.; Pelligra, C. I.; Feng, X. D.; Osuji, C. O. Directed assembly of hybrid nanomaterials and nanocomposites. Adv. Mater. 2018, 30, 1705794.

16

Hu, H. Q.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867–3889.

17

Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979–985.

18

Lim, H. S.; Lee, J. H.; Walish, J. J.; Thomas, E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 2012, 6, 8933–8939.

19

Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Self-assembled SERS substrates with tunable surface Plasmon resonances. Adv. Funct. Mater. 2011, 21, 3424–3429.

20

Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 2007, 6, 957–960.

21

Mai, Y. Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

22

Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 2018, 267, 520–541.

23

de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, 1995.

DOI
24

Figueiredo Neto, A. M.; Salinas, S. R. A. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties; Oxford University Press: New York, 2005.

DOI
25

Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129.

26

Rokhlenko, Y.; Gopinadhan, M.; Osuji, C. O.; Zhang, K.; O'Hern, C. S.; Larson, S. R.; Gopalan, P.; Majewski, P. W.; Yager, K. G. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy. Phys. Rev. Lett. 2015, 115, 258302.

27

Majewski, P. W.; Gopinadhan, M.; Jang, W. S.; Lutkenhaus, J. L.; Osuji, C. O. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J. Am. Chem. Soc. 2010, 132, 17516–17522.

28

Tran, H.; Gopinadhan, M.; Majewski, P. W.; Shade, R.; Steffes, V.; Osuji, C. O.; Campos, L. M. Monoliths of semiconducting block copolymers by magnetic alignment. ACS Nano 2013, 7, 5514–5521.

29

Gopinadhan, M.; Majewski, P. W.; Beach, E. S.; Osuji, C. O. Magnetic field alignment of a diblock copolymer using a supramolecular route. ACS Macro Lett. 2011, 1, 184–189.

30

Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414.

31

Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939–943.

32

Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 2002, 14, 1850–1853.

33

Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 2000, 12, 812–814.

DOI
34

Osuji, C.; Chao, C. Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Temperature- dependent photonic bandgap in a self-assembled hydrogen-bonded liquid- crystalline diblock copolymer. Adv. Funct. Mater. 2002, 12, 753–758.

35

Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired electrochemically tunable block copolymer full color pixels. Adv. Mater. 2009, 21, 3078–3081.

36

Liberman-Martin, A. L.; Chu, C. K.; Grubbs, R. H. Application of bottlebrush block copolymers as photonic crystals. Macromol. Rapid Commun. 2017, 38, 1700058.

37

Sveinbjörnsson, B. R.; Weitekamp, R. A.; Miyake, G. M.; Xia, Y.; Atwater, H. A.; Grubbs, R. H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. USA 2012, 109, 14332–14336.

38

Miyake, G. M.; Weitekamp, R. A.; Piunova, V. A.; Grubbs, R. H. Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J. Am. Chem. Soc. 2012, 134, 14249–14254.

39

Miyake, G. M.; Piunova, V. A.; Weitekamp, R. A.; Grubbs, R. H. Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. Angew. Chem. , Int. Ed. 2012, 51, 11246–11248.

40

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self‐assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

41

Ge, J. P.; Yin, Y. D. Responsive photonic crystals. Angew. Chem. , Int. Ed. 2011, 50, 1492–1522.

42

Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

43

Takeoka, Y.; Watanabe, M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 2003, 19, 9104–9106.

44

Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.

45

Ge, J. P.; Hu, Y. X.; Yin, Y. D. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. 2007, 119, 7572–7575.

46

Shim, T. S.; Kim, S. H.; Sim, J. Y.; Lim, J. M.; Yang, S. M. Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv. Mater. 2010, 22, 4494–4498.

47

Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem. , Int. Ed. 2015, 54, 7077–7081.

48

Dierking, I. Textures of Liquid Crystals; Wiley-VCH: Weinheim, 2003.

DOI
49

Hird, M. Ferroelectricity in liquid crystals—materials, properties and applications. Liq. Cryst. 2011, 38, 1467–1493.

50

Clark, N. A.; Lagerwall, S. T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 1980, 36, 899–901.

51

Meiboom, S.; Sammon, M.; Brinkman, W. F. Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals. Phys. Rev. A 1983, 27, 438–454.

52

Wright, D. C.; Mermin, N. D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 1989, 61, 385–432.

53

Crooker, P. P. Blue phases. In Chirality in Liquid Crystals. Kitzerow, H. S.; Bahr, C., Eds.; Springer: New York, 2001; pp 186–222.

54

Kikuchi, H. Liquid crystalline blue phases. In Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Kato, T., Ed.; Springer: Berlin Heidelberg, 2007; pp 99–117.

55

Castles, F.; Morris, S. M.; Hung, J. M. C.; Qasim, M. M.; Wright, A. D.; Nosheen, S.; Choi, S. S.; Outram, B. I.; Elston, S. J.; Burgess, C. et al. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 2014, 13, 817–821.

56

Lin, T. H.; Li, Y. N.; Wang, C. T.; Jau, H. C.; Chen, C. W.; Li, C. C.; Bisoyi, H. K.; Bunning, T. J.; Li, Q. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 2013, 25, 5050–5054.

57

Yan, J.; Wu, S. T.; Cheng, K. L.; Shiu, J. W. A full-color reflective display using polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 2013, 102, 081102.

58

Yokoyama, S.; Mashiko, S.; Kikuchi, H.; Uchida, K.; Nagamura, T. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 2006, 18, 48–51.

59

Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer- stabilized liquid crystal blue phases. Nat. Mater. 2002, 1, 64–68.

60

Ravnik, M.; Alexander, G. P.; Yeomans, J. M.; Žumer, S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc. Natl. Acad. Sci. USA 2011, 108, 5188–5192.

61

Yoshida, H.; Tanaka, Y.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Kikuchi, H.; Ozaki, M. Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2009, 2, 121501.

62

Martínez-González, J. A.; Li, X.; Sadati, M.; Zhou, Y.; Zhang, R.; Nealey, P. F.; de Pablo, J. J. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 2017, 8, 15854.

63

Oton, E.; Netter, E.; Nakano, T.; Katayama, Y. D.; Inoue, F. Monodomain blue phase liquid crystal layers for phase modulation. Sci. Rep. 2017, 7, 44575.

64

Liu, Q. K.; Cui, Y. X.; Gardner, D.; Li, X.; He, S. L.; Smalyukh, I. I. Self- alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010, 10, 1347–1353.

65

Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and e-polarizers. ACS Nano 2015, 9, 3097–3108.

66

Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403.

67

Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Mori, T.; Shimizu, Y.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self- assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π interactions. Adv. Funct. Mater. 2015, 25, 1180–1192.

68

Schneider, J.; Zhang, W. L.; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix. Nano Lett. 2017, 17, 3133–3138.

69

Lee, E.; Xia, Y.; Ferrier, R. C. Jr.; Kim, H. N.; Gharbi, M. A.; Stebe, K. J.; Kamien, R. D.; Composto, R. J.; Yang, S. Fine golden rings: Tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals. Adv. Mater. 2016, 28, 2731–2736.

70

Thorkelsson, K.; Mastroianni, A. J.; Ercius, P.; Xu, T. Direct nanorod assembly using block copolymer-based supramolecules. Nano Lett. 2012, 12, 498–504.

71

Deshmukh, R. D.; Liu, Y.; Composto, R. J. Two-dimensional confinement of nanorods in block copolymer domains. Nano Lett. 2007, 7, 3662–3668.

72

Ploshnik, E.; Salant, A.; Banin, U.; Shenhar, R. Hierarchical surface patterns of nanorods obtained by co-assembly with block copolymers in ultrathin films. Adv. Mater. 2010, 22, 2774–2779.

73

Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.

74

Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, 913–917.

75

Tian, Y.; Wang, T.; Liu, W. Y.; Xin, H. L.; Li, H. L.; Ke, Y. G.; Shih, W. M.; Gang, O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 2015, 10, 637–644.

76

Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.

77

Tian, Y.; Zhang, Y. G.; Wang, T.; Xin, H. L.; Li, H. L.; Gang, O. Lattice engineering through nanoparticle–DNA frameworks. Nat. Mater. 2016, 15, 654–661.

78

Liu, W. Y.; Tagawa, M.; Xin, H. L.; Wang, T.; Emamy, H.; Li, H. L.; Yager, K. G.; Starr, F. W.; Tkachenko, A. V.; Gang, O. Diamond family of nanoparticle superlattices. Science 2016, 351, 582–586.

79

Park, D. J.; Zhang, C.; Ku, J. C.; Zhou, Y.; Schatz, G. C.; Mirkin, C. A. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl. Acad. Sci. USA 2015, 112, 977–981.

80

Ross, M. B.; Blaber, M. G.; Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090.

81

Pelligra, C. I.; Huang, S.; Singer, J. P.; Mayo, A. T.; Mu, R. R.; Osuji, C. O. Scalable high-fidelity growth of semiconductor nanorod arrays with controlled geometry for photovoltaic devices using block copolymers. Small 2014, 10, 4304–4309.

82

Pelligra, C. I.; Toth, K.; Hu, H. Q.; Osuji, C. O. Rapid fabrication of ZnO nanorod arrays with controlled spacing by micelle-templated solvothermal growth. Nanoscale 2016, 8, 149–156.

83

Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

84

Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.

85

Hur, K.; Francescato, Y.; Giannini, V.; Maier, S. A.; Hennig, R. G.; Wiesner, U. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem. , Int. Ed. 2011, 50, 11985–11989.

86

Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D optical metamaterial made by self-assembly. Adv. Mater. 2012, 24, OP23–OP27.

87

Salvatore, S.; Demetriadou, A.; Vignolini, S.; Oh, S. S.; Wuestner, S.; Yufa, N. A.; Stefik, M.; Wiesner, U.; Baumberg, J. J.; Hess, O. et al. Tunable 3D extended self-assembled gold metamaterials with enhanced light transmission. Adv. Mater. 2013, 25, 2713–2716.

88

Moon, H. S.; Kim, J. Y.; Jin, H. M.; Lee, W. J.; Choi, H. J.; Mun, J. H.; Choi, Y. J.; Cha, S. K.; Kwon, S. H.; Kim, S. O. Atomic layer deposition assisted pattern multiplication of block copolymer lithography for 5 nm scale nanopatterning. Adv. Funct. Mater. 2014, 24, 4343–4348.

89

Park, S.; Wang, J. Y.; Kim, B.; Xu, J.; Russell, T. P. A simple route to highly oriented and ordered nanoporous block copolymer templates. ACS Nano 2008, 2, 766–772.

90

Park, S.; Wang, J. Y.; Kim, B.; Russell, T. P. From nanorings to nanodots by patterning with block copolymers. Nano Lett. 2008, 8, 1667–1672.

91

Chai, J. N.; Buriak, J. M. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2008, 2, 489–501.

92

Mun, J. H.; Chang, Y. H.; Shin, D. O.; Yoon, J. M.; Choi, D. S.; Lee, K. M.; Kim, J. Y.; Cha, S. K.; Lee, J. Y.; Jeong, J. R. et al. Monodisperse pattern nanoalloying for synergistic intermetallic catalysis. Nano Lett. 2013, 13, 5720–5726.

93

Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390–2397.

94

Cummins, C.; Ghoshal, T.; Holmes, J. D.; Morris, M. A. Strategies for inorganic incorporation using neat block copolymer thin films for etch mask function and nanotechnological application. Adv. Mater. 2016, 28, 5586–5618.

95

Gharbi, M. A.; Manet, S.; Lhermitte, J.; Brown, S.; Milette, J.; Toader, V.; Sutton, M.; Reven, L. Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano 2016, 10, 3410–3415.

96

Castles, F.; Day, F. V.; Morris, S. M.; Ko, D. H.; Gardiner, D. J.; Qasim, M. M.; Nosheen, S.; Hands, P. J. W.; Choi, S. S.; Friend, R. H. et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 2012, 11, 599–603.

97

Torquato, S.; Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 2003, 68, 041113.

98

Torquato, S. Hyperuniform states of matter. Phys. Rep. 2018, 745, 1–95.

99

Jiao, Y.; Lau, T.; Hatzikirou, H.; Meyer-Hermann, M.; Corbo, J. C.; Torquato, S. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 2014, 89, 022721.

100

Zachary, C. E.; Jiao, Y.; Torquato, S. Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. Phys. Rev. Lett. 2011, 106, 178001.

101

Donev, A.; Stillinger, F. H.; Torquato, S. Unexpected density fluctuations in jammed disordered sphere packings. Phys. Rev. Lett. 2005, 95, 090604.

102

Florescu, M.; Torquato, S.; Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. USA 2009, 106, 20658–20663.

103

Florescu, M.; Steinhardt, P. J.; Torquato, S. Optical cavities and waveguides in hyperuniform disordered photonic solids. Phys. Rev. B 2013, 87, 165116.

104

Man, W. N.; Florescu, M.; Williamson, E. P.; He, Y. Q.; Hashemizad, S. R.; Leung, B. Y. C.; Liner, D. R.; Torquato, S.; Chaikin, P. M.; Steinhardt, P. J. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proc. Natl. Acad. Sci. USA 2013, 110, 15886–15891, DOI: 10.1073/pnas.1307879110.

105

Man, W. N.; Florescu, M.; Matsuyama, K.; Yadak, P.; Nahal, G.; Hashemizad, S.; Williamson, E.; Steinhardt, P.; Torquato, S.; Chaikin, P. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Opt. Express 2013, 21, 19972–19981.

106

Degl'Innocenti, R.; Shah, Y. D.; Masini, L.; Ronzani, A.; Pitanti, A.; Ren, Y.; Jessop, D. S.; Tredicucci, A.; Beere, H. E.; Ritchie, D. A. Hyperuniform disordered terahertz quantum cascade laser. Sci. Rep. 2016, 6, 19325.

107

Sellers, S. R.; Man, W. N.; Sahba, S.; Florescu, M. Local self-uniformity in photonic networks. Nat. Commun. 2017, 8, 14439.

108

Ma, T.; Guerboukha, H.; Girard, M.; Squires, A. D.; Lewis, R. A.; Skorobogatiy, M. 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Adv. Opt. Mater. 2016, 4, 2085–2094.

109

Piechulla, P. M.; Muehlenbein, L.; Wehrspohn, R. B.; Nanz, S.; Abass, A.; Rockstuhl, C.; Sprafke, A. Fabrication of nearly-hyperuniform substrates by tailored disorder for photonic applications. Adv. Opt. Mater. 2018, 6, 1701272.

110

Zito, G.; Rusciano, G.; Pesce, G.; Malafronte, A.; di Girolamo, R.; Ausanio, G.; Vecchione, A.; Sasso, A. Nanoscale engineering of two-dimensional disordered hyperuniform block-copolymer assemblies. Phys. Rev. E 2015, 92, 050601.

111

Zito, G.; Rusciano, G.; Pesce, G.; Dochshanov, A.; Sasso, A. Surface- enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. Nanoscale 2015, 7, 8593–8606.

112

de Rosa, C.; Auriemma, F.; Diletto, C.; di Girolamo, R.; Malafronte, A.; Morvillo, P.; Zito, G.; Rusciano, G.; Pesce, G.; Sasso, A. Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 8061–8069.

113

Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957.

114

Smith, D. R.; Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003, 90, 077405.

115

Biehs, S. A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012, 109, 104301.

116

Volokitin, A. I.; Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 2007, 79, 1291–1329.

117

Shen, S.; Narayanaswamy, A.; Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 2009, 9, 2909–2913.

118

Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1, 123–128.

119

Saranathan, V.; Seago, A. E.; Sandy, A.; Narayanan, S.; Mochrie, S. G. J.; Dufresne, E. R.; Cao, H.; Osuji, C. O.; Prum, R. O. Structural diversity of arthropod biophotonic nanostructures spans amphiphilic phase-space. Nano Lett. 2015, 15, 3735–3742.

120

Vignolini, S.; Rudall, P. J.; Rowland, A. V.; Reed, A.; Moyroud, E.; Faden, R. B.; Baumberg, J. J.; Glover, B. J.; Steiner, U. Pointillist structural color in Pollia fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715.

121

Prum, R. O.; Torres, R. H.; Williamson, S.; Dyck, J. Coherent light scattering by blue feather barbs. Nature 1998, 396, 28–29.

122

Dufresne, E. R.; Noh, H.; Saranathan, V.; Mochrie, S. G. J.; Cao, H.; Prum, R. O. Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 2009, 5, 1792–1795.

123

Noh, H.; Liew, S. F.; Saranathan, V.; Mochrie, S. G. J.; Prum, R. O.; Dufresne, E. R.; Cao, H. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 2010, 22, 2871–2880.

124

Prum, R. O.; Torres, R. H. Structural colouration of mammalian skin: Convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 2004, 207, 2157–2172.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2019
Revised: 09 May 2019
Accepted: 16 May 2019
Published: 31 May 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from NSF through DMR 1720530.

Return